Regional adrenal blood flow during hypoxia in anesthetized, ventilated dogs

1989 ◽  
Vol 256 (1) ◽  
pp. H94-H100 ◽  
Author(s):  
M. K. Nishijima ◽  
M. J. Breslow ◽  
H. Raff ◽  
R. J. Traystman

The effect of hypoxic hypoxia (HH) and carbon monoxide hypoxia (COH) on adrenal medullary (MQ) and cortical (CQ) blood flow (radiolabeled microsphere technique) was studied in pentobarbital sodium-anesthetized, mechanically ventilated dogs. Animals were exposed to 60 min of hypoxia (arterial O2 content 8 vol%) induced by adding either nitrogen (HH, n = 6) or carbon monoxide (COH, n = 6) to the inspired gas. Whole adrenal Q and CQ increased by 70 and 50%, respectively, with HH but were unchanged during COH. MQ, however, increased threefold during both HH and COH. HH and COH both increased arterial levels of epinephrine, corticosteroids, and adrenocorticotropic hormone (ACTH). To determine whether the increase in CQ during HH was because of HH-induced increases in mean arterial blood pressure (MAP, approximately 20 mmHg), an additional group of animals (n = 6) was exposed to HH but had MAP maintained at control levels using a pressurized-bottle system. MAP control did not alter the CQ response to HH. We conclude that MQ appears to be associated with medullary secretory activity during hypoxia and that HH and COH stimulate adrenal medullary secretion equally. In contrast, CQ increases only with HH, despite similar increases in ACTH and corticosteroid levels during HH and COH, suggesting that an alternative mechanism is responsible for increased cortical blood flow during HH.

1989 ◽  
Vol 257 (3) ◽  
pp. H785-H790
Author(s):  
T. Sakamoto ◽  
W. W. Monafo

[14C]butanol tissue uptake was used to measure simultaneously regional blood flow in three regions of the brain (cerebral and cerebellar hemispheres and brain stem) and in five levels of the spinal cord in 10 normothermic rats (group A) and in 10 rats in which rectal temperature had been lowered to 27.7 +/- 0.3 degrees C by applying ice to the torso (group B). Pentobarbital sodium anesthesia was used. Mean arterial blood pressure varied minimally between groups as did arterial pH, PO2, and PCO2. In group A, regional spinal cord blood flow (rSCBF) varied from 49.7 +/- 1.6 to 62.6 +/- 2.1 ml.min-1.100 g-1; in brain, regional blood flow (rBBF) averaged 74.4 +/- 2.3 ml.min-1.100 g-1 in the whole brain and was highest in the brain stem. rSCBF in group B was elevated in all levels of the cord by 21-34% (P less than 0.05). rBBF, however, was lowered by 21% in the cerebral hemispheres (P less than 0.001) and by 14% in the brain as a whole (P less than 0.05). The changes in calculated vascular resistance tended to be inversely related to blood flow in all tissues. We conclude that rBBF is depressed in acutely hypothermic pentobarbital sodium-anesthetized rats, as has been noted before, but that rSCBF rises under these experimental conditions. The elevation of rSCBF in hypothermic rats confirms our previous observations.


1984 ◽  
Vol 246 (2) ◽  
pp. G195-G203
Author(s):  
R. H. Gallavan ◽  
Y. Tsuchiya ◽  
E. D. Jacobson

The purpose of this study was to determine the effects of nicotine on intestinal blood flow and oxygen consumption. The intravenous infusion of nicotine at doses corresponding to those experienced by smokers produced a transient increase in systemic arterial blood pressure and mesenteric blood flow. Subsequently a steady-state response developed that consisted of a reduction in mesenteric blood flow due to both a decrease in blood pressure and an increase in intestinal vascular resistance. This increase in resistance was probably due to increased levels of circulating catecholamines. The intra-arterial infusion of nicotine into the intestinal circulation at doses experienced by the average smoker had no effect on either intestinal blood flow or oxygen consumption. Similarly, under in vitro conditions nicotine had no direct effect on intestinal vascular smooth muscle tension. Thus, nicotine appears to reduce intestinal blood flow indirectly as a result of its systemic effects.


1992 ◽  
Vol 76 (3) ◽  
pp. 415-421 ◽  
Author(s):  
David W. Newell ◽  
Rune Aaslid ◽  
Renate Stooss ◽  
Hans J. Reulen

✓ Intracranial pressure (ICP) and continuous transcranial Doppler ultrasound signals were monitored in 20 head-injured patients and simultaneous synchronous fluctuations of middle cerebral artery (MCA) velocity and B waves of the ICP were observed. Continuous simultaneous monitoring of MCA velocity, ICP, arterial blood pressure, and expired CO2 revealed that both velocity waves and B waves occurred despite a constant CO2 concentration in ventilated patients and were usually not accompanied by fluctuations in the arterial blood pressure. Additional recordings from the extracranial carotid artery during the ICP B waves revealed similar synchronous fluctuations in the velocity of this artery, strongly supporting the hypothesis that blood flow fluctuations produce the velocity waves. The ratio between ICP wave amplitude and velocity wave amplitude was highly correlated to the ICP (r = 0.81, p < 0.001). Velocity waves of similar characteristics and frequency, but usually of shorter duration, were observed in seven of 10 normal subjects in whom MCA velocity was recorded for 1 hour. The findings in this report strongly suggest that B waves in the ICP are a secondary effect of vasomotor waves, producing cerebral blood flow fluctuations that become amplified in the ICP tracing, in states of reduced intracranial compliance.


2010 ◽  
Vol 299 (1) ◽  
pp. R55-R61 ◽  
Author(s):  
N. C. S. Lewis ◽  
G. Atkinson ◽  
S. J. E. Lucas ◽  
E. J. M. Grant ◽  
H. Jones ◽  
...  

Epidemiological data indicate that the risk of neurally mediated syncope is substantially higher in the morning. Syncope is precipitated by cerebral hypoperfusion, yet no chronobiological experiment has been undertaken to examine whether the major circulatory factors, which influence perfusion, show diurnal variation during a controlled orthostatic challenge. Therefore, we examined the diurnal variation in orthostatic tolerance and circulatory function measured at baseline and at presyncope. In a repeated-measures experiment, conducted at 0600 and 1600, 17 normotensive volunteers, aged 26 ± 4 yr (mean ± SD), rested supine at baseline and then underwent a 60° head-up tilt with 5-min incremental stages of lower body negative pressure until standardized symptoms of presyncope were apparent. Pretest hydration status was similar at both times of day. Continuous beat-to-beat measurements of cerebral blood flow velocity, blood pressure, heart rate, stroke volume, cardiac output, and end-tidal Pco2 were obtained. At baseline, mean cerebral blood flow velocity was 9 ± 2 cm/s (15%) lower in the morning than the afternoon ( P < 0.0001). The mean time to presyncope was shorter in the morning than in the afternoon (27.2 ± 10.5 min vs. 33.1 ± 7.9 min; 95% CI: 0.4 to 11.4 min, P = 0.01). All measurements made at presyncope did not show diurnal variation ( P > 0.05), but the changes over time (from baseline to presyncope time) in arterial blood pressure, estimated peripheral vascular resistance, and α-index baroreflex sensitivity were greater during the morning tests ( P < 0.05). These data indicate that tolerance to an incremental orthostatic challenge is markedly reduced in the morning due to diurnal variations in the time-based decline in blood pressure and the initial cerebral blood flow velocity “reserve” rather than the circulatory status at eventual presyncope. Such information may be used to help identify individuals who are particularly prone to orthostatic intolerance in the morning.


1979 ◽  
Vol 46 (2) ◽  
pp. 288-292 ◽  
Author(s):  
Y. A. Mengesha ◽  
G. H. Bell

Ten to fifteen healthy subjects, ages 18--30 yr, were used to assess the correlation of forearm blood flow with graded passive body tilts and vascular resistance and also to discern the relative effects of body tilts on finger blood flow. In the head-up tilts forearm blood flow and arterial blood pressure fell progressively, whereas forearm vascular resistance and pulse rate increased. In the head-down tilts the forearm blood flow and the arterial blood pressure increased, whereas the forearm vascular resistance and pulse rate decreased. These changes were found to be significantly correlated with the different tilt angles and with one another. In a preliminary study it was found that infrared heating of the carpometacarpal region produced finger vasodilatation similar to the forearm vasodilatation observed by Crockford and Hellon (6). However, unlike forearm blood flow, finger blood flow showed no appreciable response to either the head-up or head-down tilts. This indicates that the sympathetic tone and the volume of blood in the finger are not appreciably altered by this test procedure at least 1 min after the body tilt is assumed.


2002 ◽  
Vol 93 (6) ◽  
pp. 1966-1972 ◽  
Author(s):  
Maria T. E. Hopman ◽  
Jan T. Groothuis ◽  
Marcel Flendrie ◽  
Karin H. L. Gerrits ◽  
Sibrand Houtman

The purpose of the present study was to determine the effect of a spinal cord injury (SCI) on resting vascular resistance in paralyzed legs in humans. To accomplish this goal, we measured blood pressure and resting flow above and below the lesion (by using venous occlusion plethysmography) in 11 patients with SCI and in 10 healthy controls (C). Relative vascular resistance was calculated as mean arterial pressure in millimeters of mercury divided by the arterial blood flow in milliliters per minute per 100 milliliters of tissue. Arterial blood flow in the sympathetically deprived and paralyzed legs of SCI was significantly lower than leg blood flow in C. Because mean arterial pressure showed no differences between both groups, leg vascular resistance in SCI was significantly higher than in C. Within the SCI group, arterial blood flow was significantly higher and vascular resistance significantly lower in the arms than in the legs. To distinguish between the effect of loss of central neural control vs. deconditioning, a group of nine SCI patients was trained for 6 wk and showed a 30% increase in leg blood flow with unchanged blood pressure levels, indicating a marked reduction in vascular resistance. In conclusion, vascular resistance is increased in the paralyzed legs of individuals with SCI and is reversible by training.


1993 ◽  
Vol 265 (4) ◽  
pp. R715-R720 ◽  
Author(s):  
R. S. Seymour ◽  
A. R. Hargens ◽  
T. J. Pedley

The circulatory systems of vertebrate animals are closed, and blood leaves and returns to the heart at the same level. It is often concluded, therefore, that the heart works only against the viscous resistance of the system, not against gravity, even in vascular loops above the heart in which the siphon principle operates. However, we argue that the siphon principle does not assist blood flow in superior vascular loops if any of the descending vasculature is collapsible. If central arterial blood pressure is insufficient to support a blood column between the heart and the head, blood flow ceases because of vascular collapse. Furthermore, the siphon principle does not assist the heart even when a continuous stream of blood is flowing in a superior loop. The potential energy gained by blood as it is pumped to the head is lost to friction in partially collapsed descending vessels and thus is not regained. Application of the Poiseuille equation to flow in collapsible vessels is limited; resistance depends on flow rate in partially collapsed vessels with no transmural pressure difference, but flow rate is independent of resistance. Thus the pressure developed by the heart to establish a given flow rate is independent of the resistance occurring in the partially collapsed vessels. The pressure depends only on the height of the blood column and the resistance in the noncollapsed parts of the system. Simple laboratory models, involving water flow in collapsible tubing, dispel the idea that the siphon principle facilitates blood flow and suggest that previously published results may have been affected by experimental artifact.


Sign in / Sign up

Export Citation Format

Share Document