Outward currents in normal and hypertrophied feline ventricular myocytes

1989 ◽  
Vol 256 (5) ◽  
pp. H1450-H1461 ◽  
Author(s):  
R. B. Kleiman ◽  
S. R. Houser

The properties of the inward rectifier K current (IK1) and the delayed rectifier K current (IK) were studied in single feline myocytes isolated from the right ventricle of normal cats and cats with experimentally induced right ventricular hypertrophy (RVH). IK1 demonstrated time-dependent decay during hyperpolarizations and showed inward rectification with a prominent negative-slope region between -30 and -10 mV. Both IK1 and IK was carried primarily by K ions. The activation of IK during depolarizations followed a monoexponential time course, whereas the deactivation of IK tail currents was either mono- or biexponential depending on the repolarization potential. IK showed marked rectification at positive potentials. A comparison of these currents in normal and hypertrophy myocytes revealed that in RVH the magnitude of IK1 is increased, whereas the magnitude of IK is decreased. IK showed steeper rectification, had slower activation, and had more rapid deactivation in RVH. These abnormalities of the IK may contribute to the prolongation of action potential duration, which characterizes pressure-overload cardiac hypertrophy.

1996 ◽  
Vol 270 (6) ◽  
pp. H2088-H2093 ◽  
Author(s):  
L. Wang ◽  
H. J. Duff

Although the genetics of mammalian cardiac K+ channels have been most intensively investigated in mice, there are limited data available from the electrophysiological studies of the K+ currents in native mouse cardiac myocytes, especially in fetal mouse heart. The present study utilized whole cell patch-clamp techniques to assess the delayed rectifier K+ current (IK) in fetal (18th day of gestation) mouse ventricular myocytes. IK in fetal mouse ventricular myocytes activated rapidly, displayed a negative slope conductance of the current-voltage relationships at test potentials > 0 mV, satisfied the envelope of IK-tail test for a single component, and was very sensitive to dofetilide. These characteristics confirm that this current is the rapidly activating component of IK known as IK,r. In addition, dofetilide dramatically prolonged action potential duration in single ventricular myocytes as well as in ventricular myocardium, suggesting that IK,r plays a dominant role in action potential repolarization in fetal mouse heart. From these data we can conclude that fetal mouse cardiac myocytes express IK,r, which functions as a dominant repolarizing K+ current.


1997 ◽  
Vol 272 (3) ◽  
pp. H1292-H1301 ◽  
Author(s):  
B. A. Williams ◽  
G. N. Beatch

The sensitivity of the delayed rectifier K+ current (I(K)) to intracellular Mg2+ was investigated in guinea pig ventricular myocytes using the whole cell patch-clamp technique. An increase in free intracellular Mg2+ concentration ([Mg2+]i) led to a dose-dependent decrease in I(K) with a half-maximal effect of approximately 20 nM. Activation of I(K) was shifted toward more positive voltages on increasing [Mg2+]i, but little effect was observed on activation and deactivation kinetics. Isoproterenol increased I(K) and was partially reversible in both control and 100 nM [Mg2+]i. The antiarrhythmic drug dofetilide was used to separate I(K) into its two components, rapidly activating (I(Kr)) and slowly activating (I(Ks)). The magnitude of both components decreased to a similar extent with an increase in [Mg2+]i. As [Mg2+]i was reduced, however, the number of experiments in which the dofetilide-sensitive current I(Kr) displayed inward rectification was reduced. In contrast to results previously reported for frog myocytes, it is unlikely that Mg2+ effects on guinea pig I(K) are mediated by a protein phosphatase.


2021 ◽  
Vol 14 (8) ◽  
pp. 748
Author(s):  
Péter P. Nánási ◽  
Balázs Horváth ◽  
Fábián Tar ◽  
János Almássy ◽  
Norbert Szentandrássy ◽  
...  

Due to the limited availability of healthy human ventricular tissues, the most suitable animal model has to be applied for electrophysiological and pharmacological studies. This can be best identified by studying the properties of ion currents shaping the action potential in the frequently used laboratory animals, such as dogs, rabbits, guinea pigs, or rats, and comparing them to those of human cardiomyocytes. The authors of this article with the experience of three decades of electrophysiological studies, performed in mammalian and human ventricular tissues and isolated cardiomyocytes, summarize their results obtained regarding the major canine and human cardiac ion currents. Accordingly, L-type Ca2+ current (ICa), late Na+ current (INa-late), rapid and slow components of the delayed rectifier K+ current (IKr and IKs, respectively), inward rectifier K+ current (IK1), transient outward K+ current (Ito1), and Na+/Ca2+ exchange current (INCX) were characterized and compared. Importantly, many of these measurements were performed using the action potential voltage clamp technique allowing for visualization of the actual current profiles flowing during the ventricular action potential. Densities and shapes of these ion currents, as well as the action potential configuration, were similar in human and canine ventricular cells, except for the density of IK1 and the recovery kinetics of Ito. IK1 displayed a largely four-fold larger density in canine than human myocytes, and Ito recovery from inactivation displayed a somewhat different time course in the two species. On the basis of these results, it is concluded that canine ventricular cells represent a reasonably good model for human myocytes for electrophysiological studies, however, it must be borne in mind that due to their stronger IK1, the repolarization reserve is more pronounced in canine cells, and moderate differences in the frequency-dependent repolarization patterns can also be anticipated.


1990 ◽  
Vol 96 (1) ◽  
pp. 195-215 ◽  
Author(s):  
M C Sanguinetti ◽  
N K Jurkiewicz

An envelope of tails test was used to show that the delayed rectifier K+ current (IK) of guinea pig ventricular myocytes results from the activation of two outward K+ currents. One current was specifically blocked by the benzenesulfonamide antiarrhythmic agent, E-4031 (IC50 = 397 nM). The drug-sensitive current, "IKr" exhibits prominent rectification and activates very rapidly relative to the slowly activating drug-insensitive current, "IKs." IKs was characterized by a delayed onset of activation that occurs over a voltage range typical of the classically described cardiac IK. Fully activated IKs, measured as tail current after 7.5-s test pulses, was 11.4 times larger than the fully activated IKr. IKr was also blocked by d-sotalol (100 microM), a less potent benzenesulfonamide Class III antiarrhythmic agent. The activation curve of IKr had a steep slope (+7.5 mV) and a negative half-point (-21.5 mV) relative to the activation curve of IKs (slope = +12.7 mV, half-point = +15.7 mV). The reversal potential (Erev) of IKr (-93 mV) was similar to EK (-94 mV for [K+]o = 4 mM), whereas Erev of IKs was -77 mV. The time constants for activation and deactivation of IKr made up a bell-shaped function of membrane potential, peaking between -30 and -40 mV (170 ms). The slope conductance of the linear portion of the fully activated IKr-V relation was 22.5 S/F. Inward rectification of this relation occurred at potentials greater than -50 mV, resulting in a voltage-dependent decrease in peak IKr at test potentials greater than 0 mV. Peak IKr at 0 mV averaged 0.8 pA/pF (n = 21). Although the magnitude of IKr was small relative to fully activated IKs, the two currents were of similar magnitude when measured during a relatively short pulse protocol (225 ms) at membrane potentials (-20 to +20 mV) typical of the plateau phase of cardiac action potentials.


1995 ◽  
Vol 268 (6) ◽  
pp. H2321-H2328 ◽  
Author(s):  
S. Zhang ◽  
T. Sawanobori ◽  
H. Adaniya ◽  
Y. Hirano ◽  
M. Hiraoka

Effects of extracellular magnesium (Mg2+) on action potential duration (APD) and underlying membrane currents in guinea pig ventricular myocytes were studied by using the whole cell patch-clamp method. Increasing external Mg2+ concentration [Mg2+]o) from 0.5 to 3 mM produced a prolongation of APD at 90% repolarization (APD90), whereas 5 and 10 mM Mg2+ shortened it. [Mg2+]o, at 3 mM or higher, suppressed the delayed outward K+ current and the inward rectifier K+ current. Increases in [Mg2+]o depressed the peak amplitude and delayed the decay time course of the Ca2+ current (ICa), the latter effect is probably due to the decrease in Ca(2+)-induced inactivation. Thus 3 mM Mg2+ suppressed the peak ICa but increased the late ICa amplitude at the end of a 200-ms depolarization pulse, whereas 10 mM Mg2+ suppressed both components. Application of 10 mM Mg2+ shifted the voltage-dependent activation and inactivation by approximately 10 mV to more positive voltage due to screening the membrane surface charges. Application of manganese (1-5 mM) also caused dual effects on APD90, similar to those of Mg2+, and suppressed the peak ICa with slowed decay. These results suggest that the dual effects of Mg2+ on APD in guinea pig ventricular myocytes can be, at least in part, explained by its action on ICa with slowed decay time course in addition to suppressive effects on K+ currents.


1996 ◽  
Vol 271 (4) ◽  
pp. C1233-C1243 ◽  
Author(s):  
Y. Song ◽  
L. Belardinelli

The goal of this study was to determine the electrophysiological and functional effects of adenosine on ventricular myocytes of guinea pig, rabbit, rat, and ferret hearts. Adenosine (100 microM) shortened the action potential durations of rat and ferret myocytes by 14 +/- 1 and 57 +/- 7%, reduced the amplitudes of cell twitch shortening by 13 +/- 1 and 54 +/- 5%, and increased outward currents by 15 +/- 4 and 55 +/- 5%, respectively, but had no effect on guinea pig and rabbit myocytes. The properties of adenosine-activated outward current in rat and ferret ventricular myocytes indicated that this current is the adenosine-sensitive K+ current [IK(Ado)]. Adenosine had no significant effect on basal Ca2+ current but specifically inhibited isoproterenol-stimulated L-type Ca2+ current in myocytes of all species studied. Binding studies revealed that the density of A1 adenosine receptors (A1AdoR) was highest in ferret and lowest in rabbit myocytes, but the differential effects of adenosine among species could not be solely explained by differences in A1AdoR density. In summary, adenosine shortened the action potential and reduced the twitch shortening of rat and ferret but not of guinea pig and rabbit ventricular myocytes. Shortening of the action potential was associated with the activation of IK(Ado). The anti-beta-adrenergic action of adenosine appeared to be independent of species.


1995 ◽  
Vol 269 (2) ◽  
pp. H524-H532 ◽  
Author(s):  
K. Muraki ◽  
Y. Imaizumi ◽  
M. Watanabe ◽  
Y. Habuchi ◽  
W. R. Giles

The role of delayed rectifier K+ current(s) (IK) in rabbit left atrium was examined by applying the whole cell voltage-clamp technique to isolated single myocytes. Right-triangular waveforms, which mimic the shape of atrial action potentials (APs), and selective blockers were used to compare the contribution of IK with other K+ currents to repolarization of the APs. IK measured at 34 degrees C in atrial myocytes was very small; the maximum peak amplitude of the tail current (IK,tail) at -40 mV was approximately 50 pA. The IK,tail was almost abolished in most cells (approximately 80%) by the application of 1 microM E-4031, a class III antiarrhythmic drug. The E-4031-sensitive current recorded with the triangular command wave-form showed strong inward rectification and had a maximum amplitude of approximately 30 pA at -40 mV. Total outward current elicited by triangular command pulses depended strongly on stimulation frequency. The main frequency-dependent component was a Ca(2+)-independent transient K+ current (I(t)). I(t) elicited by triangular pulses at 1 Hz was substantially reduced by 4-aminopyridine (4-AP) at potentials positive to 0 mV but was not changed significantly by 1 microM E-4031; 100 microM E-4031 reduced I(t) by approximately 30%. The shape of the APs which were recorded from a single rabbit atrial cell strongly depended on the pulse frequency. Application of 1 microM E-4031 increased action potential duration (APD) in > 50% of cells examined but had little effect on the resting membrane potential (RMP). Application of 0.1 mM BaCl2 also lengthened APD and reduced RMP by approximately 20 mV.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 275 (1) ◽  
pp. L145-L154 ◽  
Author(s):  
C. Vandier ◽  
M. Delpech ◽  
P. Bonnet

Single smooth muscle cells of rabbit intrapulmonary artery were voltage clamped using the perforated-patch configuration of the patch-clamp technique. We observed spontaneous transient outward currents (STOCs) and a steady-state outward current. Because STOCs were tetraethylammonium sensitive and activated by Ca2+ influx, they were believed to represent activation of Ca2+-activated K+ channels. The steady-state outward current, which was sensitive to 4-aminopyridine, was the delayed rectifier K+ current. In cells voltage clamped at 0 mV, we found that STOCs were not randomly distributed in amplitude but were composed of multiples of 1.57 ± 0.56 pA/pF. The mean frequency of STOCs was 5.51 ± 3.49 Hz. Ryanodine (10 μM), caffeine (5 mM), thapsigargin (200 nM), and hypoxia [Formula: see text] = 10 mmHg) decreased STOCs. The effect of hypoxia on STOCs was partially reversible only if the experiment was conducted in the presence of thapsigargin. Hypoxia and thapsigargin decrease steady-state outward current. Thapsigargin and removal of external Ca2+abolished the effect of hypoxia, suggesting that hypoxia decreases steady-state outward current by a Ca2+-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document