Regulation of arteriolar tone and responses via L-arginine pathway in skeletal muscle

1992 ◽  
Vol 262 (4) ◽  
pp. H987-H992 ◽  
Author(s):  
G. Kaley ◽  
A. Koller ◽  
J. M. Rodenburg ◽  
E. J. Messina ◽  
M. S. Wolin

With in vivo television microscopy, changes in arteriolar diameter to topical administration of various vasoactive agents were examined in the absence or in the presence of NG-monomethyl-L-arginine (L-NMMA, topical 100 microM) or NG-nitro-L-arginine (L-NNA, 2.5 microM, 20 microliters/min ia), specific inhibitors of endothelium-derived relaxing factor (EDRF) biosynthesis. In cremaster muscle arterioles (15-22 microns) of rats (n = 6-11), dilations to acetylcholine (1-100 ng) were significantly inhibited (60-70%) by either of the arginine analogues. This inhibition was reversed by subsequent administration of 1 mM L-arginine. Dose-dependent constriction to norepinephrine was enhanced by L-NMMA. Indomethacin treatment reduced arteriolar dilation to bradykinin (BK, 1-100 ng), which was significantly inhibited by additional administration of L-NNA. Application of L-NNA first, followed by additional indomethacin, elicited similar results. Dilations to sodium nitroprusside and adenosine were not reduced in the presence of the inhibitors. L-NMMA or L-NNA caused no change in systemic blood pressure but elicited a significant reduction in arteriolar diameter; this effect was not reversed by 1 mM L-arginine. These data demonstrate the presence of an L-arginine pathway to produce EDRF (nitric oxide) in skeletal muscle microcirculation that mediates and/or modulates arteriolar responses to vasoactive agents and could contribute to the regulation of basal vascular tone.

1995 ◽  
Vol 268 (4) ◽  
pp. H1628-H1633 ◽  
Author(s):  
A. Koller ◽  
J. M. Rodenburg ◽  
G. Kaley

In skeletal muscle of pentobarbital sodium-anesthetized rats, the mechanism of action and possible role of the potent vasodilator bradykinin (BK) in regulation of arteriolar tone were investigated. Changes in diameter of third-order arterioles of cremaster muscle in response to topical administration of BK and other vasoactive agents were measured with an image-shearing monitor and recorded with video microscopy. All agonists were administered topically on the exteriorized muscle. With use of Hoe-140, a B2-receptor antagonist, the presence of kinin receptors in arterioles was studied. In control preparations, 10(-5) M arachidonic acid (AA), 0.5 x 10(-6) M acetylcholine (ACh), and 10(-5) M adenosine (ADO) evoked dilation of arterioles of up to 70% of resting diameter. BK (10(-9), 10(-8), 10(-7), and 10(-6) M) elicited dose-dependent arteriolar dilations (1.3 +/- 1.3, 4.1 +/- 0.5, 10.3 +/- 1.6, and 13.3 +/- 1.3 microns, respectively). In the presence of 10(-7) M Hoe-140, dilations to AA, ACh, and ADO were not affected, but those to 10(-9)-10(-7) M BK were eliminated or significantly inhibited (10(-6) M BK: to 2.9 +/- 1.8 microns). Also, whereas Hoe-140 significantly reduced basal arteriolar diameters (from 16.7 +/- 0.9 to 13.8 +/- 1.1 microns, P < 0.05), it did not affect constrictions to norepinephrine.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (6) ◽  
pp. H2110-H2116
Author(s):  
R. Y. Chen ◽  
G. Ross ◽  
K. Y. Chyu ◽  
P. H. Guth

The role of L-arginine-derived nitric oxide (NO) in cholinergic vasodilation of resistance vessels was studied in the intact stomach of the rat, utilizing an in vivo microscopy technique. Two L-arginine analogues, NG-monomethyl-L-arginine (L-NMMA) and nitro-L-arginine methyl ester (L-NAME), were used to block NO synthesis. Cholinergic dilation of gastric submucosal arterioles was induced by topical application of various concentrations of acetylcholine (ACh) (10(-7)-10(-4) M). Intravenous but not topical administration of L-NMMA and L-NAME caused an increase in arterial pressure. Intravenous or topical L-NAME reduces resting arteriolar diameter. These findings support the contention that NO formation modulates basal vascular tone and suggest that NO release may play a significant role in the regulation of the gastric circulation. L-Arginine analogues attenuated the arteriolar dilating effect of ACh but not adenosine or nitroglycerin. Substantial arteriolar responses to ACh remained after systemic or topical treatment with either L-NMMA or L-NAME. These results indicate that the L-arginine-NO pathway accounts only in part for ACh-induced vasodilation in gastric resistance vessels in vivo.


1990 ◽  
Vol 112 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Shou-Yan Lee ◽  
G. W. Schmid-Scho¨nbein

Although blood flow in the microcirculation of the rat skeletal muscle has negligible inertia forces with very low Reynolds number and Womersley parameter, time-dependent pressure and flow variations can be observed. Such phenomena include, for example, arterial flow overshoot following a step arterial pressure, a gradual arterial pressure reduction for a step flow, or hysteresis between pressure and flow when a pulsatile pressure is applied. Arterial and venous flows do not follow the same time course during such transients. A theoretical analysis is presented for these phenomena using a microvessel with distensible viscoelastic walls and purely viscous flow subject to time variant arterial pressures. The results indicate that the vessel distensibility plays an important role in such time-dependent microvascular flow and the effects are of central physiological importance during normal muscle perfusion. In-vivo whole organ pressure-flow data in the dilated rat gracilis muscle agree in the time course with the theoretical predictions. Hemodynamic impedances of the skeletal muscle microcirculation are investigated for small arterial and venous pressure amplitudes superimposed on an initial steady flow and pressure drop along the vessel.


1982 ◽  
Vol 243 (1) ◽  
pp. H51-H60 ◽  
Author(s):  
J. E. Faber ◽  
P. D. Harris ◽  
I. G. Joshua

The contribution of endogenous prostaglandins (PGs) to the control of arteriolar diameter in the microcirculation is incompletely defied and has only been studied in drug-anesthetized animals. To test the possibility that endogenous PGs are tonically released to exert a net dilator influence at certain levels in the microcirculation, television microscopy was used to quantitate the arteriolar responses in the rat cremaster muscle to local blockade of PG synthesis with indomethacin. Rats were decerebrated by a midcollicular transection and were allowed to recover from surgical anesthesia. The cremaster muscle with intact circulation and innervation was suspended by sutures in a temperature-controlled Krebs bath. Diameters, vasomotion frequency, and vasomotion amplitude of arterioles at several anatomic levels were measured before and after local inhibition of PG synthesis in the presence and absence of alpha-adrenergic receptor blockade. Inhibition of PG synthesis produced marked constriction (42-66% of control) at all arteriolar levels, with greater responses occurring in the smaller arterioles. PG synthesis blockade increased vasomotion frequency in arterioles that exhibited spontaneous vasomotion during control periods, and blockade induced vasomotion in vessels lacking spontaneous vasomotion. Pretreatment with phentolamine significantly attenuated the constriction and augmentation of vasomotion. These data indicate that dilator PGs participate in the moment-to-moment regulation of arteriolar tone and local blood flow in skeletal muscle. Further, their mechanism of action may involve alterations in neuronal norepinephrine release or alpha-receptor sensitivity.


2000 ◽  
Vol 83 (05) ◽  
pp. 752-758 ◽  
Author(s):  
Claude Le Feuvre ◽  
Annie Brunet ◽  
Thuc Do Pham ◽  
Jean-Philippe Metzger ◽  
André Vacheron ◽  
...  

SummaryThe 3-morpholinosydnonimine (SIN-1) generates both nitric oxide (NO) and superoxide anion (O2−). It elicits dose-dependent vasodilation in vivo, in spite of the opposite effects of its breakdown products on vascular tone and platelet aggregation.This study was designed to investigate the influence of intravenous SIN-1 injection on platelet Ca2+ handling in patients undergoing coronary angiography. SIN-1 administration reduced cytosolic [Ca2+] in unstimulated platelets by decreasing Ca2+ influx. It attenuated Ca2+ mobilization from internal stores evoked by thrombin or thapsigargin. In vitro studies were used as an approach to investigate how simultaneous productions of NO and O2− from SIN-1 modify thrombin- or thapsigargin-induced platelet Ca2+ mobilization. Superoxide dismutase, the O2− scavenger, enhanced the capacity of SIN-1 to inhibit Ca2+ mobilization but catalase had no effect.This suggests that the effects of SIN-1 on platelet Ca2+ handling resemble those of NO, but are modulated by simultaneous O2− release, independently of H2O2 formation.


1990 ◽  
Vol 258 (3) ◽  
pp. H916-H920 ◽  
Author(s):  
A. Koller ◽  
G. Kaley

In rat cremaster muscle, utilizing parallel arteriolar occlusion, we found that an increase in red blood cell (RBC) velocity (3.5-26.5 mm/s) per se induced an increase in diameter (1.5-9.4 microns) of arterioles (mean control diam 21.5 +/- 0.6 microns; n = 25). The dilation of arterioles appeared only when RBC velocity increased and started always with a delay (mean 8.4 +/- 0.5 s) after the increase in flow velocity. A positive linear correlation was found between peak changes in RBC velocity and diameter (r = 0.87, P less than 0.05). The velocity sensor as well as the mechanism(s) that mediates this response is likely to be located in endothelial cells, because the dilation to increased RBC velocity was completely eliminated after impairment of arteriolar endothelium with light-dye (L-D) treatment. The in vivo demonstration of this phenomenon in arterioles suggests the existence of a new endothelium-dependent, flow velocity-sensitive mechanism for the regulation of blood flow in the microcirculation.


1995 ◽  
Vol 269 (6) ◽  
pp. H1955-H1964 ◽  
Author(s):  
J. Panes ◽  
M. A. Perry ◽  
D. C. Anderson ◽  
A. Manning ◽  
B. Leone ◽  
...  

The aim of the present study was to characterize and compare the expression of intercellular adhesion molecule 1 (ICAM-1) on unstimulated and endotoxin-challenged endothelial cells in different tissues of the rat. ICAM-1 expression was measured using 125I-labeled anti-rat ICAM-1 monoclonal antibody (MAb) and an isotype-matched control MAb labeled with 131I (to correct for nonspecific accumulation of the binding MAb). Under baseline conditions, ICAM-1 MAb binding was observed in all organs. The binding of 125I-ICAM-1 MAb varied widely among organs, with the largest accumulation (per g tissue) in the lung, followed by heart (1/30th of lung activity), splanchnic organs (1/50th of lung activity), thymus (1/100th of lung activity), testes (1/300th of lung activity), and skeletal muscle (1/800th of lung activity). Endotoxin induced an increase in ICAM-1 MAb binding in all organs except the spleen. Endotoxin-induced upregulation of ICAM-1 was greatest in heart and skeletal muscle (5- to 10-fold), whereas the remaining organs exhibited a two- to fourfold increase in ICAM-1 expression. Maximal upregulation of ICAM-1 occurred at 9-12 h after endotoxin administration. A dose-dependent increase in ICAM-1 expression was elicited by 0.1-10 microgram/kg, with higher doses (up to 5 mg/kg) producing no further increment. Induction of ICAM-1 mRNA after endotoxin was observed in all tissues examined (lung, heart, intestine), peaked at 3 h, and then rapidly returned to control levels. These findings indicate that ICAM-1 is constitutively expressed on vascular endothelium in all organs of the rat and that there are significant regional differences in the magnitude and time course of endotoxin-induced ICAM-1 expression.


1997 ◽  
Vol 273 (3) ◽  
pp. H1502-H1508 ◽  
Author(s):  
S. P. Didion ◽  
P. K. Carmines ◽  
H. Ikenaga ◽  
W. G. Mayhan

The goal of this study was to test the hypothesis that chronic myocardial infarction potentiates agonist-induced constrictor responses of rat skeletal muscle arterioles in vivo. Eight weeks after we performed coronary artery ligation or sham (control) surgery, the spinotrapezius muscle was prepared for direct visualization of the microcirculation. Diameter of third-order arterioles (40.7 +/- 0.5 microns) to topical suffusion of angiotensin II (ANG II; 0.1-10 nM), arginine vasopressin (AVP; 0.1-10 nM), endothelin-1 (ET-1; 1.0-100 pM), and the thromboxane analog U-46619 (1.0-100 nM) was measured in both groups. Myocardial-infarcted rats exhibited enhanced arteriolar constrictor responses to ANG II and AVP compared with the responses in controls. In contrast, ET-1- and U-46619-induced constrictor responses were similar in control and myocardial-infarcted rats. Additional experiments explored the impact of NG-monomethyl-L-arginine (L-NMMA; 0.1 mM) on arteriolar reactivity. In control animals, L-NMMA potentiated ANG II- and AVP-induced vasoconstriction, achieving values similar to those observed in myocardial-infarcted rats. L-NMMA did not alter vasoconstrictor responses in rats with chronic myocardial infarction. These observations suggest that enhanced agonist-induced vasoconstriction during heart failure may reflect a loss of nitric oxide-mediated modulation of arteriolar tone.


Sign in / Sign up

Export Citation Format

Share Document