Endothelium regulates skeletal muscle microcirculation by a blood flow velocity-sensing mechanism

1990 ◽  
Vol 258 (3) ◽  
pp. H916-H920 ◽  
Author(s):  
A. Koller ◽  
G. Kaley

In rat cremaster muscle, utilizing parallel arteriolar occlusion, we found that an increase in red blood cell (RBC) velocity (3.5-26.5 mm/s) per se induced an increase in diameter (1.5-9.4 microns) of arterioles (mean control diam 21.5 +/- 0.6 microns; n = 25). The dilation of arterioles appeared only when RBC velocity increased and started always with a delay (mean 8.4 +/- 0.5 s) after the increase in flow velocity. A positive linear correlation was found between peak changes in RBC velocity and diameter (r = 0.87, P less than 0.05). The velocity sensor as well as the mechanism(s) that mediates this response is likely to be located in endothelial cells, because the dilation to increased RBC velocity was completely eliminated after impairment of arteriolar endothelium with light-dye (L-D) treatment. The in vivo demonstration of this phenomenon in arterioles suggests the existence of a new endothelium-dependent, flow velocity-sensitive mechanism for the regulation of blood flow in the microcirculation.

1991 ◽  
Vol 260 (3) ◽  
pp. H862-H868 ◽  
Author(s):  
A. Koller ◽  
G. Kaley

In the presence of intact endothelium, in control conditions, calculated wall shear rate (WSR) (means +/- SE: 2,658 +/- 123 s-1; n = 21) was independent of arteriolar diameter (16.2-27.2 microns; correlation coefficient: r = 0.12, P greater than 0.05) in cremaster muscle of pentobarbital-anesthetized rats. An increase in blood flow velocity (due to parallel arteriolar occlusion) elicited a significant increase in WSR (to 4,981 +/- 253 s-1) followed by a delayed (6-15 s) increase in diameter (from: 22.5 +/- 0.6 to 29.5 +/- 0.8 microns), which consequently resulted in a significant decrease in WSR (to 3,879 +/- 203 s-1). As a result of the increased flow velocity and dilation, calculated arteriolar blood flow increased by 230%. After impairment of the endothelium of arterioles by a light-dye technique, basal WSR became significantly higher (3,604 +/- 341 s-1), and despite a greater increase in WSR (10,360 +/- 1,471 s-1) the dilation was absent. Now an inverse linear correlation was found between arteriolar diameter and WSR both before (r = 0.58, P less than 0.05) and during increased flow velocity conditions (r = 0.85, P less than 0.05). Also, arteriolar blood flow that was already less after impairment of endothelium increased by only 66% during the period of increased flow velocity due to the absence of dilation. Results suggest that an increase in wall shear stress is the stimulus for the endothelium-dependent mechanism that elicits "flow dependent" arteriolar dilation.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 119 (11) ◽  
pp. 1752-1766 ◽  
Author(s):  
Xiaoqiang Chen ◽  
Weilan Wu ◽  
Shifei Wang ◽  
Jiayuan Zhong ◽  
Nima Moumin Djama ◽  
...  

Background Magnetic targeting may help microbubbles (MBs) reach obstructive thrombi and improve the efficacy of MB-mediated sonothrombolysis, but the role of magnetic targeting in MB-mediated sonothrombolysis remains elusive. Objectives We investigate the feasibility and efficacy of magnetically targeted MB-mediated sonothrombolysis for the treatment of obstructive thrombi. Materials and Methods Red and white thromboembolic models were established in vitro and in vivo. The models were randomly assigned to the control, ultrasound plus control MB (US + C-MB), ultrasound plus magnetic MB (US + M-MB), or US + M-MB + recombinant tissue-type plasminogen activator (r-tPA) groups and treated for 30 minutes. The recanalization rate, average blood flow velocity, hindlimb perfusion, and skeletal muscle injury marker levels were recorded. Results The recanalization rate, average blood flow velocity, and hindlimb perfusion in the red and white thromboembolic models were all significantly higher in the US + M-MB and US + M-MB + r-tPA groups than in the control and US + C-MB groups both in vitro and in vivo. Moreover, the levels of the skeletal muscle injury markers were all significantly lower in the US + M-MB and US + M-MB + r-tPA groups than in the other two groups in vivo for both thromboembolic models. However, the thrombolytic effects of red thrombi performed better than those of white thrombi in the US + M-MB + r-tPA group. Conclusion M-MB-mediated sonothrombolysis improves the efficacy of thrombolysis both in vitro and in vivo, and reduces tissue damage in clogging model; thus, this method may serve as a promising approach for treating thrombus-occlusive diseases.


1991 ◽  
Vol 261 (4) ◽  
pp. H1095-H1101
Author(s):  
E. Y. Kostromina ◽  
I. M. Rodionov ◽  
V. S. Shinkarenko

Internal diameter, wall thickness, wall thickness-to-radius ratio (W/r), and blood flow velocity in arterioles of different branching orders were measured in the rat cremaster muscle. The heterogeneity of W/r increased in more distal orders. During papaverine treatment, there was a direct correlation between vasodilation and W/r. When pressure was decreased by 20%, 42% of arterioles showed autoregulation; the remaining arterioles constricted in proportion to initial W/r. Similarly, the dilatation of arterioles with autoregulatory properties increased with initial W/r. It is concluded that W/r is an important parameter quantitatively related to tone, mechanical characteristics, and autoregulatory properties of arterioles.


2020 ◽  
Vol 61 (6) ◽  
pp. 188-200
Author(s):  
Malte Schroeder ◽  
Lennart Viezens ◽  
Jördis Sündermann ◽  
Svenja Hettenhausen ◽  
Gerrit Hauenherm ◽  
...  

Introduction: Prostate cancer has a special predilection to form bone metastases. Despite the known impact of the microvascular network on tumour growth and its dependence on the organ-specific microenvironment, the characteristics of the tumour vasculature in bone remain unknown. Methods: The cell lines LNCaP, DU145, and PC3 were implanted into the femurs of NSG mice to examine the microvascular properties of prostate cancer in bone. Tumour growth and the functional and morphological alterations of the microvasculature were analysed for 21 days in vivo using a transparent bone chamber and fluorescence microscopy. Results: Vascular density was significantly lower in tumour-bearing bone than in non-tumour-bearing bone, with a marked loss of small vessels. Accelerated blood flow velocity led to increased volumetric blood flow per vessel, but overall perfusion was not affected. All of the prostate cancer cell lines had similar vascular patterns, with more pronounced alterations in rapidly growing tumours. Despite minor differences between the prostate cancer cell lines associated with individual growth behaviours, the same overall pattern was observed and showed strong similarity to that of tumours growing in soft tissue. Discussion: The increase in blood flow velocity could be a specific characteristic of prostate cancer or the bone microenvironment.


1990 ◽  
Vol 112 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Shou-Yan Lee ◽  
G. W. Schmid-Scho¨nbein

Although blood flow in the microcirculation of the rat skeletal muscle has negligible inertia forces with very low Reynolds number and Womersley parameter, time-dependent pressure and flow variations can be observed. Such phenomena include, for example, arterial flow overshoot following a step arterial pressure, a gradual arterial pressure reduction for a step flow, or hysteresis between pressure and flow when a pulsatile pressure is applied. Arterial and venous flows do not follow the same time course during such transients. A theoretical analysis is presented for these phenomena using a microvessel with distensible viscoelastic walls and purely viscous flow subject to time variant arterial pressures. The results indicate that the vessel distensibility plays an important role in such time-dependent microvascular flow and the effects are of central physiological importance during normal muscle perfusion. In-vivo whole organ pressure-flow data in the dilated rat gracilis muscle agree in the time course with the theoretical predictions. Hemodynamic impedances of the skeletal muscle microcirculation are investigated for small arterial and venous pressure amplitudes superimposed on an initial steady flow and pressure drop along the vessel.


2011 ◽  
Vol 110 (3) ◽  
pp. 695-704 ◽  
Author(s):  
Danielle J. McCullough ◽  
Robert T. Davis ◽  
James M. Dominguez ◽  
John N. Stabley ◽  
Christian S. Bruells ◽  
...  

With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O2 delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O2 delivery to O2 uptake, evidenced through improved microvascular Po2 (PmO2), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ∼6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify PmO2 in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline PmO2 (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting PmO2 and the time-delay before PmO2 fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the PmO2 in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle.


2021 ◽  
Author(s):  
Maria Sancho ◽  
Nicholas R. Klug ◽  
Amreen Mughal ◽  
Thomas J. Heppner ◽  
David Hill-Eubanks ◽  
...  

SUMMARYThe dense network of capillaries composed of capillary endothelial cells (cECs) and pericytes lies in close proximity to all neurons, ideally positioning it to sense neuro/glial-derived compounds that regulate regional and global cerebral perfusion. The membrane potential (VM) of vascular cells serves as the essential output in this scenario, linking brain activity to vascular function. The ATP-sensitive K+ channel (KATP) is a key regulator of vascular VM in other beds, but whether brain capillaries possess functional KATP channels remains unknown. Here, we demonstrate that brain capillary ECs and pericytes express KATP channels that robustly control VM. We further show that the endogenous mediator adenosine acts through A2A receptors and the Gs/cAMP/PKA pathway to activate capillary KATP channels. Moreover, KATP channel stimulation in vivo causes vasodilation and increases cerebral blood flow (CBF). These findings establish the presence of KATP channels in cECs and pericytes and suggest their significant influence on CBF.HIGHLIGHTSCapillary network cellular components—endothelial cells and pericytes—possess functional KATP channels.Activation of KATP channels causes profound hyperpolarization of capillary cell membranes.Capillary KATP channels are activated by exogenous adenosine via A2A receptors and cAMP-dependent protein kinase.KATP channel activation by adenosine or synthetic openers increases cerebral blood flow.


1999 ◽  
Vol 58 (4) ◽  
pp. 919-923 ◽  
Author(s):  
Jan Henriksson

Techniques in human skeletal muscle research are by necessity predominantly 'descriptive'.Microdialysis has raised high expectations that it could meet the demand for a method that allows 'mechanistic' investigations to be performed in human skeletal muscle. In the present review, some views are given on how well the initial expectations on the use of the microdialysis technique in skeletal muscle have been fulfilled, and the areas in which additional work is needed in order to validate microdialysis as an important metabolic technique in this tissue. The microdialysis catheter has been equated to an artificial blood vessel, which is introduced into the tissue. By means of this 'vessel' the concentrations of compounds in the interstitial space can be monitored. The concentration of substances in the collected samples is dependent on the rate of perfusate flow. When perfusate flow is slow enough to allow complete equilibration between interstitial and perfusate fluids, the concentration in the perfusate is maximal and identical to the interstitial concentration. Microdialysis data may be influenced by changes in blood flow, especially in instances where the tissue diffusivity limits the recovery in vivo, i.e. when recovery in vitro is 100 %, whereas the recovery in vivo is less than 100 %. Microdialysis data indicate that a significant arterial-interstitial glucose concentration gradient exists in skeletal muscle but not in adipose tissue at rest. While the concentrations of glucose and lactate in the dialysate from skeletal muscle are close to the expected values, the glycerol values obtained for muscle are still puzzling. Ethanol added to the perfusate will be cleared by the tissue at a rate that is determined by the nutritive blood flow (the microdialysis ethanol technique). It is concluded that microdialysis of skeletal muscle has become an important technique for mechanistic studies in human metabolism and nutrition.


Sign in / Sign up

Export Citation Format

Share Document