Right and left ventricular O2 uptake during hemodilution and beta-adrenergic stimulation

1993 ◽  
Vol 265 (5) ◽  
pp. H1769-H1777 ◽  
Author(s):  
G. J. Crystal ◽  
S. J. Kim ◽  
M. R. Salem

Myocardial O2 uptake (MVO2) and related variables were compared in right and left ventricles (RV and LV, respectively) during isovolemic hemodilution (HD) alone and combined with isoproterenol (Iso) infusion in 13 isoflurane-anesthetized open-chest dogs. Measurements of myocardial blood flow (MBF) obtained with radioactive microspheres were used to calculate MVO2. Lactate extraction (Lacext) was determined. The study consisted of two experimental series: 1) graded HD (dextran) to hematocrit (Hct) of 10% and 2) Iso (0.1 microgram.kg-1.min-1 iv) during moderate HD (Hct = 18 +/- 1%). In series 1, arteriovenous O2 content difference in both ventricles decreased in parallel with reduced arterial O2 content caused by HD, i.e., percent O2 extraction was constant; MVO2 was maintained by proportional increases in MBF. In series 2, Iso during moderate HD raised MVO2 (RV, +156%; LV, +80%). Higher MVO2 was satisfied by combination of increased MBF and O2 extraction in RV and by increased MBF alone in LV. Lacext remained consistent with adequate myocardial O2 delivery throughout study. Conclusions were that 1) both RV and LV tolerated extreme HD (Hct = 10%) because blood flow reserves were sufficient to fully compensate for reduced arterial O2 content; 2) significant cardiac reserve was evident during HD, which could be recruited Iso; and 3) because increase in MVO2 in RV caused by Iso in presence of HD was partially satisfied by increased O2 extraction, the absence of augmented O2 extraction during HD alone was not due to impaired release of O2 from diluted red blood cells.(ABSTRACT TRUNCATED AT 250 WORDS)

1989 ◽  
Vol 67 (3) ◽  
pp. 1234-1244 ◽  
Author(s):  
P. T. Schumacker ◽  
R. W. Samsel

Normally, tissue O2 uptake (VO2) is set by metabolic activity rather than O2 delivery (QO2 = blood flow X arterial O2 content). However, when QO2 is reduced below a critical level, VO2 becomes limited by O2 supply. Experiments have shown that a similar critical QO2 exists, regardless of whether O2 supply is reduced by progressive anemia, hypoxemia, or reduction in blood flow. This appears inconsistent with the hypothesis that O2 supply limitation must occur by diffusion limitation, since very different mixed venous PO2 values have been seen at the critical point with hypoxic vs. anemic hypoxia. The present study sought to begin clarifying this paradox by studying the theoretical relationship between tissue O2 supply and uptake in the Krogh tissue cylinder model. Steady-state O2 uptake was computed as O2 delivery to tissue representative of whole body was gradually lowered by anemic, hypoxic, or stagnant hypoxia. As diffusion began to limit uptake, the fall in VO2 was computed numerically, yielding a relationship between QO2 and VO2 in both supply-independent and O2 supply-dependent regions. This analysis predicted a similar biphasic relationship between QO2 and VO2 and a linear fall in VO2 at O2 deliveries below a critical point for all three forms of hypoxia, as long as intercapillary distances were less than or equal to 80 microns. However, the analysis also predicted that O2 extraction at the critical point should exceed 90%, whereas real tissues typically extract only 65–75% at that point. When intercapillary distances were larger than approximately 80 microns, critical O2 extraction ratios in the range of 65–75% could be predicted, but the critical point became highly sensitive to the type of hypoxia imposed, contrary to experimental findings. Predicted gas exchange in accord with real data could only be simulated when a postulated 30% functional peripheral O2 shunt (arterial admixture) was combined with a tissue composed of Krogh cylinders with intercapillary distances of less than or equal to 80 microns. The unrealistic efficacy of tissue O2 extraction predicted by the Krogh model (in the absence of postulated shunt) may be a consequence of the assumed homogeneity of tissues, because real tissues exhibit many forms of heterogeneity among capillary units. Alternatively, the failure of the original Krogh model to fully predict tissue O2 supply dependency may arise from basic limitations in the assumptions of that model.


1983 ◽  
Vol 245 (5) ◽  
pp. G697-G702 ◽  
Author(s):  
P. T. Nowicki ◽  
B. S. Stonestreet ◽  
N. B. Hansen ◽  
A. C. Yao ◽  
W. Oh

Regional and total gastrointestinal (GI) blood flow, O2 delivery, and whole-gut O2 extraction and O2 consumption were measured before and 30, 60, and 120 min after feeding in nonanesthetized, awake 2-day-old piglets. Cardiac output and blood flow to kidneys, heart, brain, and liver were also determined. Blood flow was measured using the radiolabeled microsphere technique. In the preprandial condition, total GI blood flow was 106 +/- 9 ml X min-1 X 100 g-1, while O2 extraction was 17.2 +/- 0.9% and O2 consumption was 1.99 +/- 0.19 ml O2 X min-1 X 100 g-1. Thirty minutes after slow gavage feeding with 30 ml/kg artificial pig milk, O2 delivery to the GI tract and O2 extraction rose significantly (P less than 0.05) by 35 +/- 2 and 33 +/- 2%, respectively. The increase in O2 delivery was effected by a significant increase in GI blood flow, which was localized to the mucosal-submucosal layer of the small intestine. O2 uptake by the GI tract increased 72 +/- 4% 30 min after feeding. Cardiac output and blood flow to non-GI organs did not change significantly with feeding, whereas arterial hepatic blood flow decreased significantly 60 and 120 min after feeding. The piglet GI tract thus meets the oxidative demands of digestion and absorption by increasing local blood flow and tissue O2 extraction.


1987 ◽  
Vol 63 (2) ◽  
pp. 726-732 ◽  
Author(s):  
C. E. King ◽  
S. L. Dodd ◽  
S. M. Cain

The consequences of a decreased O2 supply to a contracting canine gastrocnemius muscle preparation were investigated during two forms of hypoxia: hypoxic hypoxia (HH) (n = 6) and CO hypoxia (COH) (n = 6). Muscle O2 uptake, blood flow, O2 extraction, and developed tension were measured at rest and at 1 twitch/s isometric contractions in normoxia and in hypoxia. No differences were observed between the two groups at rest. During contractions and hypoxia, however, O2 uptake decreased from the normoxic level in the COH group but not in the HH group. Blood flow increased in both groups during hypoxia, but more so in the COH group. O2 extraction increased further with hypoxia (P less than 0.05) during concentrations in the HH group but actually fell (P less than 0.05) in the COH group. The O2 uptake limitation during COH and contractions was associated with a lesser O2 extraction. The leftward shift in the oxyhemoglobin dissociation curve during COH may have impeded tissue O2 extraction. Other factors, however, such as decreased myoglobin function or perfusion heterogeneity must have contributed to the inability to utilize the O2 reserve more fully.


1978 ◽  
Vol 45 (6) ◽  
pp. 966-970 ◽  
Author(s):  
S. M. Cain ◽  
C. K. Chapler

The ability of the hind limb to obtain oxygen and maintain its O2 uptake in relation to the whole body during isovolemic hemodilution with dextran was measured in eight anesthetized, paralyzed dogs kept at constant ventilation. Hind limb venous outflow (ankle to upper thigh) was restricted by tourniquets to femoral vein. Hind limb blood flow, O2 uptake (VO2), cardiac output, and total VO2 were measured at normal hematocrit, at hematocrits just above (16%, stage 2) and just below (10%, stage II) that at which total VO2 could be maintained at the control level, and following isovolemic reinfusion of recovered red blood cells (Hct = 23%). VO2 was maintained at the control level in whole body and hind limb during stage I. Total VO2 decreased significantly in stage II (P less than 0.05), whereas limb VO2 did not. Hind limb had a consistently greater extraction ratio for O2 (P less than 0.01) and lower venous oxygen partial pressure than the body as a whole (P less than 0.01). In spite of limitations of O2 delivery by anemia to the point that total O2 demand was not met, there was no redistribution of blood flow away from or decreased demand for O2 by the hind limb, which was mostly skeletal muscle.


1989 ◽  
Vol 256 (1) ◽  
pp. H171-H178 ◽  
Author(s):  
J. W. Kiel ◽  
G. L. Riedel ◽  
A. P. Shepherd

To determine the effects of hemodilution on gastric and intestinal oxygenation, isolated segments of canine stomach and small bowel were perfused by a pressurized reservoir with blood at hematocrits of 40 and 20%. Arteriovenous O2 difference, blood flow, and arterial and venous pressures were monitored continuously as perfusion pressure was reduced in 30-mmHg steps from 180 to 30 mmHg. O2 consumption was calculated as the product of the steady-state arteriovenous O2 difference and blood flow at each perfusion pressure. Gastric and intestinal O2 uptake were relatively well maintained over most of the pressure range when the hematocrit was set at 40%. After hemodilution, gastric O2 uptake decreased significantly only at 90 and 60 mmHg, but intestinal O2 uptake was significantly reduced except at 30 mmHg. When gastric and intestinal O2 uptake were plotted as a function of blood flow, the O2 uptake vs. blood flow relationship were shifted down and to the right by hemodilution. Hemodilution also linearized the O2 uptake vs. blood flow relationship in the intestine. However, when O2 uptake was plotted as function of O2 delivery, the gastric O2 uptake vs. delivery curves at the two hematocrits were superimposed on each other, but the O2 uptake vs. delivery curves for the intestine diverged except at low rates of O2 delivery. We conclude that by reducing the O2-carrying capacity of the blood, hemodilution adversely affects gastric and intestinal oxygenation. Our results also indicate that hemodilution lowers gastric O2 uptake by reducing O2 delivery; however, hemodilution lowers intestinal O2 uptake not only by reducing O2 delivery but also by impairing O2 extraction.


1990 ◽  
Vol 69 (3) ◽  
pp. 830-836 ◽  
Author(s):  
M. C. Hogan ◽  
D. E. Bebout ◽  
A. T. Gray ◽  
P. D. Wagner ◽  
J. B. West ◽  
...  

In the present study we investigated the effects of carboxyhemoglobinemia (HbCO) on muscle maximal O2 uptake (VO2max) during hypoxia. O2 uptake (VO2) was measured in isolated in situ canine gastrocnemius (n = 12) working maximally (isometric twitch contractions at 5 Hz for 3 min). The muscles were pump perfused at identical blood flow, arterial PO2 (PaO2) and total hemoglobin concentration [( Hb]) with blood containing either 1% (control) or 30% HbCO. In both conditions PaO2 was set at 30 Torr, which produced the same arterial O2 contents, and muscle blood flow was set at 120 ml.100 g-1.min-1, so that O2 delivery in both conditions was the same. To minimize CO diffusion into the tissues, perfusion with HbCO-containing blood was limited to the time of the contraction period. VO2max was 8.8 +/- 0.6 (SE) ml.min-1.100 g-1 (n = 12) with hypoxemia alone and was reduced by 26% to 6.5 +/- 0.4 ml.min-1.100 g-1 when HbCO was present (n = 12; P less than 0.01). In both cases, mean muscle effluent venous PO2 (PVO2) was the same (16 +/- 1 Torr). Because PaO2 and PVO2 were the same for both conditions, the mean capillary PO2 (estimate of mean O2 driving pressure) was probably not much different for the two conditions, even though the O2 dissociation curve was shifted to the left by HbCO. Consequently the blood-to-mitochondria O2 diffusive conductance was likely reduced by HbCO.(ABSTRACT TRUNCATED AT 250 WORDS)


1979 ◽  
Vol 237 (6) ◽  
pp. E548 ◽  
Author(s):  
A P Shepherd

It has been postulated that local circulatory control mechanisms regulate the O2 flux to parenchymal cells by two vascular mechanisms: changes in blood flow that minimize capillary PO2 variations and changes in the density of the perfused capillary bed through which O2 extraction is regulated. To test this prediction, isolated loops of canine jejenum and ileum were perfused at either constant blood flow or constant pressure, and intraluminal glucose was used to increase metabolic rate. In the constant-flow series, glucose increased O2 extraction, O2 uptake, and rubidium extraction. Resistance fell when the metabolic rate was elevated. In the constant-pressure series, glucose increased blood flow, O2 extraction, O2 uptake, and capillary filtration coefficients. These results show that vascular resistance falls and that capillary density increases following an increase in oxygen demand. Thus, the glucose-stimulated gut loop seems to be a valid model of metabolic hyperemia, and its behavior would be difficult to reconcile with a purely myogenic theory of intestinal blood flow autoregulation.


1983 ◽  
Vol 244 (6) ◽  
pp. H749-H755 ◽  
Author(s):  
R. B. Wilkening ◽  
G. Meschia

The rate of O2 delivery to the pregnant uterus (FaO2) was decreased in chronic sheep preparations by mechanical occlusion of uterine blood flow. The relationship of uterine venous O2 saturation (SVO2) to FaO2 was curvilinear with convexity toward the SVO2 axis. As SVO2 decreased, there was a decrease in uterine and umbilical venous O2 tension (PO2), with no appreciable reduction of the PO2 difference between the two veins and a decrease in the umbilical vein O2 delivery rate. Fetal O2 uptake and base excess remained normal as the umbilical vein O2 delivery rate was reduced from 1.1 to 0.6 mmol . min-1 . kg-1 but decreased markedly at an O2 delivery rate less than 0.5. Umbilical venous CO2 tension (PCO2) was higher than, and strongly correlated with, uterine venous PCO2 (R = 0.954). These observations support a venous equilibration model of ovine placental exchange and demonstrate that under normal physiological conditions the O2 supply to the fetal lamb is approximately twice the value necessary to maintain an adequate fetal O2 uptake and a normal fetal base excess.


1984 ◽  
Vol 246 (3) ◽  
pp. H374-H379
Author(s):  
K. Talafih ◽  
G. J. Grover ◽  
H. R. Weiss

The purpose of this study was to determine if thyroxine-induced hypertrophic hearts can maintain an adequate O2 supply-consumption balance both at rest and under hypoxic stress. New Zealand White rabbits were given 0.5 mg/kg L-thyroxine (T4) for 3 or 16 days, and a third group served as a control. Chests were opened under anesthesia, and myocardial blood flow was determined using microspheres. In half of these animals, microspectrophotometric determinations were made on left ventricular arterial and venous O2 saturation, and by combining this data with blood flows, O2 consumption was determined. The other animals were then subjected to hypoxia (8% O2 in N2), and flows and O2 consumption were again determined. T4 increased arterial pressure and heart rate in normoxic animals and also increased myocardial blood flow 65 and 210% for 3- and 16-day T4 groups, respectively, with no regional differences. O2 extraction was also increased in T4 animals. O2 consumption increased 134 and 280% in 3- and 16-day T4 groups. Only normoxic saline controls had a regional O2 consumption difference with subendocardial O2 consumption higher than subepicardial values. When compared with their respective normoxic groups, blood flow increased 49 and 101% for the hypoxic 3- and 16-day T4 groups. Hypoxia had no effect on saline control blood flow. Hypoxia decreased O2 extraction 29 and 41%, respectively, in the 3- and 16-day T4 groups and was unchanged in saline controls.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 89 (4) ◽  
pp. 1293-1301 ◽  
Author(s):  
Bruno Grassi ◽  
Michael C. Hogan ◽  
Kevin M. Kelley ◽  
William G. Aschenbach ◽  
Jason J. Hamann ◽  
...  

A previous study (Grassi B, Gladden LB, Samaja M, Stary CM, and Hogan MC, J Appl Physiol 85: 1394–1403, 1998) showed that convective O2 delivery to muscle did not limit O2 uptake (V˙o 2) on-kinetics during transitions from rest to contractions at ∼60% of peakV˙o 2. The present study aimed to determine whether this finding is also true for transitions involving contractions of higher metabolic intensities.V˙o 2 on-kinetics were determined in isolated canine gastrocnemius muscles in situ ( n = 5) during transitions from rest to 4 min of electrically stimulated isometric tetanic contractions corresponding to the muscle peakV˙o 2. Two conditions were compared: 1) spontaneous adjustment of muscle blood flow (Q˙) (Control) and 2) pump-perfused Q˙, adjusted ∼15–30 s before contractions at a constant level corresponding to the steady-state value during contractions in Control (Fast O2 Delivery). In Fast O2 Delivery, adenosine was infused intra-arterially. Q˙ was measured continuously in the popliteal vein; arterial and popliteal venous O2 contents were measured at rest and at 5- to 7-s intervals during the transition. Muscle V˙o 2 was determined as Q˙times the arteriovenous blood O2 content difference. The time to reach 63% of the V˙o 2 difference between resting baseline and steady-state values during contractions was 24.9 ± 1.6 (SE) s in Control and 18.5 ± 1.8 s in Fast O2 Delivery ( P < 0.05). FasterV˙o 2 on-kinetics in Fast O2Delivery was associated with an ∼30% reduction in the calculated O2 deficit and with less muscle fatigue. During transitions involving contractions at peak V˙o 2, convective O2 delivery to muscle, together with an inertia of oxidative metabolism, contributes in determining theV˙o 2 on-kinetics.


Sign in / Sign up

Export Citation Format

Share Document