Inhaled nitric oxide: diameter response patterns in feline small pulmonary arteries and veins

1996 ◽  
Vol 270 (3) ◽  
pp. H974-H980 ◽  
Author(s):  
M. Shirai ◽  
A. Shimouchi ◽  
A. T. Kawaguchi ◽  
K. Sunagawa ◽  
I. Ninomiya

Using an X-ray television system on the in vivo cat lung, we directly measured internal diameter (ID) changes in the small pulmonary arteries and veins (100-1,100 microns ID) in response to 5, 15, and 40 ppm nitric oxide (NO) inhalations. We also measured to what extent 40 ppm NO inhalation can attenuate large ID constrictions at the different serial segments of the small vessels due to unilobar anoxic (0% O2) exposure. Under normoxic conditions, 5-40 ppm NO inhalations significantly increased the ID of both arteries and veins less than approximately 900 microns dose dependently but caused no significant, or only slight, ID increases in the vessels larger than this, if any at all. The ID increase in the serially connected arteries was nonuniform (4-18, 8-28, and 7-35% with 5, 15, and 40 ppm NO inhalations, respectively), whereas that for the veins was relatively uniform (4-9, 6-17, and 7-18% with 5, 15, and 40 ppm NO, respectively). The maximum ID increase occurred in the 200- to 500- and 200- to 700-microns arteries in response to 5-15 and 40 ppm NO, respectively. Unilobar anoxic exposure significantly decreased the ID of the 100- to 700-microns arteries and veins, but not the ID of the other-sized vessels. The ID decrease in the serially connected arteries was nonuniform (13-29%) but relatively uniform in the veins (8-12%). The maximum ID decrease occurred in the 200- to 300-microns arteries. However, adding 40 ppm NO to the lobe completely eradicated the ID decreases at all segments of the arteries and veins and, instead, caused significant ID increase (11-21%) in the arteries and (10-12%) in the veins. The data indicate that, according to dosage, 5-40 ppm NO inhalations cause selective dilation of approximately 100- to 900-microns pulmonary arteries and veins, particularly the 200- to 700-microns arteries. During anoxic exposure, the vasodilator effect of NO is preserved and can completely reverse the marked pulmonary vasoconstriction.

1994 ◽  
Vol 266 (5) ◽  
pp. H1777-H1785 ◽  
Author(s):  
M. Shirai ◽  
T. Shindo ◽  
I. Ninomiya

In this study, we examined how locally mediated hypoxic pulmonary vasoconstriction is modulated by autonomic nervous system activation during global alveolar hypoxia (GAH) accompanied by systemic hypoxemia. Using an X-ray television system on the in vivo cat lung, we measured changes in the internal diameter (ID) during GAH and regional alveolar hypoxia (RAH) without systemic hypoxemia in identical small pulmonary arteries and veins (100-600 microns ID). We also analyzed the effects of the autonomic nervous system blockade on the hypoxic ID changes. During GAH the ID of the arteries reduced by 5 +/- 1 and 3 +/- 1% with 10 and 5% O2 inhalations, respectively, whereas during RAH the arterial ID reduced by 12 +/- 1 and 18 +/- 1% with 10 and 5% O2 inhalations, respectively. The magnitude of the ID reduction was significantly smaller during GAH than during RAH. After pretreatment with propranolol, however, GAH induced large ID reductions (16 +/- 1 and 23 +/- 1% with 10 and 5% O2 inhalations) with patterns very similar to those seen during RAH. Phentolamine and atropine had no effect on the response during GAH. The ID reductions during RAH, on the other hand, were unaffected by all the blockers. The results indicate that, in the cat, alveolar hypoxia per se acts locally to constrict the small pulmonary vessels and that the hypoxic vasoconstriction is attenuated by a beta-receptor-mediated vasodilator effect during GAH with systemic hypoxemia. In addition, we found that, after adrenalectomy plus ganglion blockade with hexamethonium bromide, the GAH-induced ID reduction with 5% O2 inhalation was enhanced from 3 to 19%.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 62 (2) ◽  
pp. 451-458 ◽  
Author(s):  
M. Shirai ◽  
K. Sada ◽  
I. Ninomiya

In in vivo cat lung, using an X-ray TV system, we analyzed responses in internal diameter (ID), flow velocity, and volume flow of arteries and veins (100–500 microns ID) to histamine (8–15 micrograms/kg iv) under three conditions. With histamine alone, three types of ID response (constriction, dilatation, and no change) occurred in parallel-arranged arteries. Relative frequency and magnitude of constriction were maximum in arteries of 300–400 micron ID, whereas those of dilatation were maximum in arteries of 100–200 micron ID. In veins, relatively uniform constriction occurred. Under H2-blockade, histamine caused greater constriction than that with histamine alone in arteries and veins of 300–500 micron ID. Under beta-blockade, with histamine, ID of all vessels decreased significantly below the ID sizes under the above two conditions, and no dilatation occurred. In two parallel arteries that showed opposite ID changes to histamine, flow velocity increased, but volume flow decreased in a constricted artery while it increased in a dilated one. Those data indicated that, with histamine, qualitatively and quantitatively nonuniform ID response was induced in both parallel- and series-arranged small pulmonary arteries and, in turn, produced heterogeneous flow distribution. Factors to cause the nonuniformity may be partly explained by difference in density of H2- and beta-receptors in vascular walls.


1987 ◽  
Vol 63 (4) ◽  
pp. 1601-1609 ◽  
Author(s):  
K. Sada ◽  
M. Shirai ◽  
I. Ninomiya

Using a new X-ray TV system, we analyzed effects of vagal nerve stimulation (VNS; 1–30 Hz) and intravenous injection of acetylcholine (Ach; 0.3–0.9 microgram) on the internal diameter (ID; 100–1,500 microns) of small pulmonary arteries and veins in anesthetized rabbits. In selective segments of the arteries, ID decreased abruptly and maximally by 50–70% in a specific stimulus frequency to the vagal nerve and a dose of ACh. The vasoconstrictor sites were distributed near the branching points of the arteries, particularly those downstream, and their numbers increased with an increase in the stimulus frequencies and ACh doses. The relative frequencies of occurrences were 15.3% with VNS (30 Hz) and 5.3% with ACh (0.9 microgram). In nonselective segments with VNS, ID decreased frequency dependently by 0, 4, 12, and 26% at 1, 4, 15, and 30 Hz, respectively, and with ACh, decreased dose dependently by 21 and 35% with 0.3 and 0.9 microgram, respectively. The vasoconstriction in response to VNS and ACh was attenuated by atropine, enhanced by eserine, and not affected by phentolamine. That vasoconstriction to VNS was abolished by hexamethonium. No selective constriction was found in veins and the ID was decreased uniformly by 1–2% with VNS and ACh.


2005 ◽  
Vol 289 (1) ◽  
pp. L5-L13 ◽  
Author(s):  
Letitia Weigand ◽  
Joshua Foxson ◽  
Jian Wang ◽  
Larissa A. Shimoda ◽  
J. T. Sylvester

Previous studies indicated that acute hypoxia increased intracellular Ca2+ concentration ([Ca2+]i), Ca2+ influx, and capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCC) in smooth muscle cells from distal pulmonary arteries (PASMC), which are thought to be a major locus of hypoxic pulmonary vasoconstriction (HPV). Moreover, these effects were blocked by Ca2+-free conditions and antagonists of SOCC and nonselective cation channels (NSCC). To test the hypothesis that in vivo HPV requires CCE, we measured the effects of SOCC/NSCC antagonists (SKF-96365, NiCl2, and LaCl3) on pulmonary arterial pressor responses to 2% O2 and high-KCl concentrations in isolated rat lungs. At concentrations that blocked CCE and [Ca2+]i responses to hypoxia in PASMC, SKF-96365 and NiCl2 prevented and reversed HPV but did not alter pressor responses to KCl. At 10 μM, LaCl3 had similar effects, but higher concentrations (30 and 100 μM) caused vasoconstriction during normoxia and potentiated HPV, indicating actions other than SOCC blockade. Ca2+-free perfusate and the voltage-operated Ca2+ channel (VOCC) antagonist nifedipine were potent inhibitors of pressor responses to both hypoxia and KCl. We conclude that HPV required influx of Ca2+ through both SOCC and VOCC. This dual requirement and virtual abolition of HPV by either SOCC or VOCC antagonists suggests that neither channel provided enough Ca2+ on its own to trigger PASMC contraction and/or that during hypoxia, SOCC-dependent depolarization caused secondary activation of VOCC.


1995 ◽  
Vol 268 (4) ◽  
pp. H1586-H1592 ◽  
Author(s):  
Y. Gao ◽  
H. Zhou ◽  
J. U. Raj

Endothelium-derived nitric oxide (EDNO) modulates fetal pulmonary vasoactivity. The role of EDNO in regulation of vasomotor tone in fetal pulmonary arteries vs. that in veins is not known. We have investigated the role of EDNO in the responses of pulmonary arteries and veins of full-term fetal lambs. Fourth-generation pulmonary arterial and venous rings were suspended in organ chambers filled with modified Krebs-Ringer bicarbonate solution (95% O2-5% CO2 at 37 degrees C), and their isometric force was measured. N omega-nitro-L-arginine had no effect on the resting tension of pulmonary arteries with endothelium but caused contraction of pulmonary veins with endothelium. The basal level of intracellular guanosine 3',5'-cyclic monophosphate (cGMP) of pulmonary veins with endothelium was higher than that of arteries with endothelium. In pulmonary arteries, bradykinin, but not acetylcholine, induced endothelium-dependent relaxation and an increase in cGMP content. In pulmonary veins, acetylcholine, but not bradykinin, induced endothelium-dependent relaxation and an increase in cGMP content. Agonist-induced maximal relaxation and increases in cGMP content were smaller in pulmonary arteries than in veins. All these endothelium-dependent responses were abolished by N omega-nitro-L-arginine. In tissues without endothelium, nitric oxide induced significantly less relaxation and less increase in cGMP content in pulmonary arteries than in pulmonary veins. All vessels relaxed similarly to 8-bromoguanosine 3',5'-cyclic monophosphate. Our data suggest that the role of EDNO in modulating tone differs between pulmonary arteries and veins in full-term fetal lambs.(ABSTRACT TRUNCATED AT 250 WORDS)


2016 ◽  
Vol 17 (8) ◽  
pp. 1321 ◽  
Author(s):  
E.Y. Kong ◽  
W.K. Yeung ◽  
T.K.Y. Chan ◽  
S.H. Cheng ◽  
K.N. Yu

1989 ◽  
Vol 67 (5) ◽  
pp. 2147-2153 ◽  
Author(s):  
W. R. Tracey ◽  
J. T. Hamilton ◽  
I. D. Craig ◽  
N. A. Paterson

Because small pulmonary arteries are believed to be the major site of hypoxic pulmonary vasoconstriction (HPV), pulmonary venular responses to hypoxia have received little attention. Therefore the responses of isolated guinea pig pulmonary venules to hypoxia (bath PO2, 25 Torr) and anoxia (bath PO2, 0 Torr) were characterized. Pulmonary venules [effective lumen radius (ELR), 116 +/- 2 microns] with an adherent layer of parenchyma responded to hypoxia and anoxia with a graded sustained contraction (hypoxia, 0.03 +/- 0.01; anoxia, 0.26 +/- 0.03 mN/mm), whereas paired femoral venules (ELR, 184 +/- 7 microns) contracted to anoxia only (0.05 +/- 0.02 mN/mm). Repeated challenges with hypoxia and anoxia continued to elicit sustained pulmonary venular contractions; femoral venule contractions to anoxia were not repeatable. Hypoxia- and anoxia-induced pulmonary venular contractions were calcium and pH dependent. Dissection of the parenchyma from pulmonary venules did not alter contractions to decreased PO2. Anoxic contractions of pulmonary venules were variably reduced by replacement of the bath fluid; however, the release of a contractile mediator(s) from pulmonary venules during hypoxia or anoxia was not demonstrated. Pulmonary venular responses to hypoxia and anoxia are similar to those induced by hypoxia in vivo, and results obtained from this model may be useful in predicting mechanisms of HPV.


2002 ◽  
Vol 174 (1) ◽  
pp. 9-15 ◽  
Author(s):  
M. Bäck ◽  
L. Walch ◽  
X. Norel ◽  
J.-P. Gascard ◽  
G. Mazmanian ◽  
...  

1995 ◽  
Vol 268 (3) ◽  
pp. L509-L518 ◽  
Author(s):  
M. J. Griffiths ◽  
S. Liu ◽  
N. P. Curzen ◽  
M. Messent ◽  
T. W. Evans

Our aim was to demonstrate increased NO activity from inducible NO synthase (iNOS) in pulmonary arteries (PA) from rats treated with endotoxin [lipopolysaccharide (LPS), 20 mg/kg ip]. LPS treatment diminished the contractile response of PA to potassium chloride (KCl) and phenylephrine (PE) and increased levels of guanosine 3',5'-cyclic monophosphate (cGMP) in endothelium-denuded vessels. Both the NO synthase (NOS) antagonists NG-monomethyl-L-arginine (L-NMMA; nonselective) and aminoguanidine (selective for iNOS) enhanced PE-induced contraction in endothelium-denuded vessels from LPS-treated rats. Furthermore, L-NMMA-induced contraction of endothelium-denuded vessels from LPS-treated rats was stereospecifically antagonized by L-arginine and associated with decreased cGMP levels. These data suggest that NO is produced in increased amounts from PA smooth muscle after LPS treatment. LPS treatment caused increased expression of mRNA for iNOS in PA. This effect of LPS was attenuated by pretreatment with dexamethasone, suggesting that induction of NOS in PA smooth muscle underlies the increased NO activity associated with LPS administration.


1994 ◽  
Vol 76 (1) ◽  
pp. 56-64 ◽  
Author(s):  
A. al-Tinawi ◽  
G. S. Krenz ◽  
D. A. Rickaby ◽  
J. H. Linehan ◽  
C. A. Dawson

X-ray angiograms obtained from isolated perfused dog lungs were used to measure changes in the internal diameter of small intraparenchymal pulmonary arteries (150–1,600 microns) and veins (200–1,000 microns) in response to hypoxia or intra-arterial serotonin [5-hydroxytryptamine (5-HT)] infusion. The diameter changes in response to the two stimuli were measured over a range of stimulus-induced increases (delta Pa) in the total arteriovenous pressure drop. When the resulting delta Pa was small, all arteries in the diameter range studied constricted in response to either stimuli. The maximum decrease in diameter was approximately 25% with hypoxia and 36% with 5-HT. However, when delta Pa was large, arteries with a control diameter larger than approximately 800 microns distended with hypoxia. On the other hand, 5-HT constricted all the arteries in the size range studied regardless of the resulting magnitude of delta Pa. Hypoxia caused a small (approximately 9%) constriction in all veins in the diameter range studied independent of diameter or the magnitude of delta Pa, whereas in the concentration range studied 5-HT had no significant influence on these veins. An analysis of the potential impact of these vessels on total pulmonary vascular resistance suggested that although vessels in the size range studied contributed significantly to the total response to these two stimuli, vessels smaller than those studied also made a major contribution to the total response.


Sign in / Sign up

Export Citation Format

Share Document