Inotropic agent EMD-53998 weakens nucleotide and phosphate binding to cross bridges in porcine myocardium

1996 ◽  
Vol 271 (4) ◽  
pp. H1394-H1406 ◽  
Author(s):  
Y. Zhao ◽  
M. Kawai

The effect of EMD-53998 (EMD) on elementary steps of the cross-bridge cycle in skinned porcine myocardium was studied to understand the positive inotropic mechanisms of EMD. The kinetic constants of the elementary steps were obtained by sinusoidal analysis and compared in the presence and absence of 50 microM EMD. In the presence of 50 microM EMD, the equilibrium constant of the cross-bridge detachment step decreases three times, and the equilibrium constant of the cross-bridge attachment (force generation) step increases two times. Our results further show that, in the presence of 50 microM EMD, the association constants of MgATP and MgADP decrease to one-ninth and one-third, respectively, and the association constant of phosphate decreases to one-third. These results indicate that EMD suppresses the nucleotide binding to cross bridges and increases cross-bridge resistance to phosphate accumulation in myocardium. These results predict that EMD decreases the number of detached cross bridges and increases the number of attached cross bridges. This prediction is consistent with the twofold increase of isometric tension with 50 microM EMD.

1994 ◽  
Vol 266 (2) ◽  
pp. C437-C447 ◽  
Author(s):  
Y. Zhao ◽  
M. Kawai

The effect of 2,3-butanedione monoxime (BDM) on elementary steps of the cross-bridge cycle was studied with the sinusoidal analysis technique in skinned rabbit psoas muscle fibers. Our results showed that isometric tension and stiffness decreased progressively with an increase in the BDM concentration. The MgATP and MgADP binding constants increased 27 and 6 times, respectively, when BDM was increased from 0 to 18 mM, whereas the phosphate binding constant did not change significantly. The equilibrium constants of the ATP isomerization and detachment step were not sensitive to BDM, whereas the equilibrium constant of the attachment (power stroke) step decreased with BDM. Thus, in the presence of BDM, the number of attached cross bridges decreases; more cross bridges accumulate in the detached state, causing isometric tension and stiffness to decline. However, our detailed analysis shows that the decrease in the number of attached cross bridges is approximately 40%, which is not adequate to account for the 84% decrease in the isometric tension when 18 mM BDM was present. Therefore we suggest that a thin-filament activation mechanism is also affected by BDM.


2020 ◽  
Author(s):  
R Stehle

ABSTRACTThe release of inorganic phosphate (Pi) from the cross-bridge is a pivotal step in the cross-bridge ATPase cycle leading to force generation. It is well known that Pi release and the force-generating step are reversible, thus increase of [Pi] decreases isometric force by product inhibition and increases the rate constant kTR of mechanically-induced force redevelopment due to the reversible redistribution of cross-bridges among non-force-generating and force-generating states. The experiments on cardiac myofibrils from guinea pig presented here show that increasing [Pi] increases kTR almost reciprocally to force, i.e., kTR ≈ 1/force. To elucidate which cross-bridge models can explain the reciprocal kTR-force relation, simulations were performed for models varying in sequence and kinetics of 1) the Pi release-rebinding equilibrium, 2) the force-generating step and its reversal, and 3) the transitions limiting forward and backward cycling of cross-bridges between non-force-generating and force-generating states. Models consisting of fast reversible force generation before/after rapid Pi release-rebinding fail to describe the kTR–force relation observed in experiments. Models consistent with the experimental kTR-force relation have in common that Pi binding and/or force-reversal are/is intrinsically slow, i.e., either Pi binding or force-reversal or both limit backward cycling of cross-bridges from force-generating to non-force-generating states.STATEMENT OF SIGNIFICANCEPrevious mechanical studies on muscle fibers, myofibrils and myosin interacting with actin revealed that force production associated to phosphate release from myosin’s active site presents a reversible process in the cross-bridge cycle. The correlation of this reversible process to the process(es) limiting kinetics of backward cycling from force-generating to non-force-generating states remained unclear.Experimental data of cardiac myofibrils and model simulations show that the combined effects of [Pi] on force and the rate constant of force redevelopment (kTR) are inconsistent with fast reversible force generation before/after rapid Pi release-rebinding. The minimum requirement in sequential models for successfully describing the experimentally observed nearly reciprocal change of force and kTR is that either the Pi binding or the force-reversal step limit backward cycling.


1998 ◽  
Vol 274 (5) ◽  
pp. C1306-C1311 ◽  
Author(s):  
C. Y. Seow ◽  
L. Morishita ◽  
B. H. Bressler

Direct action of the cardiotonic bipyridine milrinone on the cross bridges of single fibers of skinned rabbit skeletal muscle was investigated. At 10°C and pH 7.0, milrinone reduced isometric tension in a logarithmically concentration-dependent manner, with a 55% reduction in force at 0.6 mM. Milrinone also reduced Ca2+ sensitivity of skinned fibers in terms of force production; the shift in the force-pCa curve indicated a change in the pCa value at 50% maximal force from 6.10 to 5.94. The unloaded velocity of shortening was reduced by 18% in the presence of 0.6 mM milrinone. Parts of the transient tension response to step change in length were altered by milrinone, so that the test and control transients could not be superimposed. The results indicate that milrinone interferes with the cross-bridge cycle and possibly detains cross bridges in low-force states. The results also suggest that the positive inotropic effect of milrinone on cardiac muscle is probably not due to the drug’s direct action on the muscle cross bridges. The specific and reversible action of the bipyridine on muscle cross bridges makes it a potentially useful tool for probing the chemomechanical cross-bridge cycle.


1977 ◽  
Vol 55 (5) ◽  
pp. 1208-1210 ◽  
Author(s):  
Bernard H. Bressler

The instantaneous elasticity and maximum isometric tetanic tension of isolated frog and toad sartorii have been measured in hypertonic Ringer solution. Although the mechanical response of contracting muscle continued to decrease as the tonicity of the bathing solution was increased to 1.26 × R, 1.52 × R, and 2.04 × R, a similar change in the instantaneous stiffness could not be shown. This finding was not expected on the basis of our current model of the cross-bridge mechanism which predicts that the instantaneous stiffness is a measure of the total number of tension-generating cross-bridges formed in a stimulated muscle. The compatability of our findings with an electrostatic theory of the cross-bridge mechanism proposed by Iwazumi (1970) is discussed.


2021 ◽  
Vol 153 (3) ◽  
Author(s):  
Masataka Kawai ◽  
Robert Stehle ◽  
Gabriele Pfitzer ◽  
Bogdan Iorga

In this study, we aimed to study the role of inorganic phosphate (Pi) in the production of oscillatory work and cross-bridge (CB) kinetics of striated muscle. We applied small-amplitude sinusoidal length oscillations to rabbit psoas single myofibrils and muscle fibers, and the resulting force responses were analyzed during maximal Ca2+ activation (pCa 4.65) at 15°C. Three exponential processes, A, B, and C, were identified from the tension transients, which were studied as functions of Pi concentration ([Pi]). In myofibrils, we found that process C, corresponding to phase 2 of step analysis during isometric contraction, is almost a perfect single exponential function compared with skinned fibers, which exhibit distributed rate constants, as described previously. The [Pi] dependence of the apparent rate constants 2πb and 2πc, and that of isometric tension, was studied to characterize the force generation and Pi release steps in the CB cycle, as well as the inhibitory effect of Pi. In contrast to skinned fibers, Pi does not accumulate in the core of myofibrils, allowing sinusoidal analysis to be performed nearly at [Pi] = 0. Process B disappeared as [Pi] approached 0 mM in myofibrils, indicating the significance of the role of Pi rebinding to CBs in the production of oscillatory work (process B). Our results also suggest that Pi competitively inhibits ATP binding to CBs, with an inhibitory dissociation constant of ∼2.6 mM. Finally, we found that the sinusoidal waveform of tension is mostly distorted by second harmonics and that this distortion is closely correlated with production of oscillatory work, indicating that the mechanism of generating force is intrinsically nonlinear. A nonlinear force generation mechanism suggests that the length-dependent intrinsic rate constant is asymmetric upon stretch and release and that there may be a ratchet mechanism involved in the CB cycle.


2020 ◽  
Vol 295 (39) ◽  
pp. 13664-13676 ◽  
Author(s):  
Stephanie Willing ◽  
Emma Dyer ◽  
Olaf Schneewind ◽  
Dominique Missiakas

Staphylococcal peptidoglycan is characterized by pentaglycine cross-bridges that are cross-linked between adjacent wall peptides by penicillin-binding proteins to confer robustness and flexibility. In Staphylococcus aureus, pentaglycine cross-bridges are synthesized by three proteins: FemX adds the first glycine, and the homodimers FemA and FemB sequentially add two Gly-Gly dipeptides. Occasionally, serine residues are also incorporated into the cross-bridges by enzymes that have heretofore not been identified. Here, we show that the FemA/FemB homologues FmhA and FmhC pair with FemA and FemB to incorporate Gly-Ser dipeptides into cross-bridges and to confer resistance to lysostaphin, a secreted bacteriocin that cleaves the pentaglycine cross-bridge. FmhA incorporates serine residues at positions 3 and 5 of the cross-bridge. In contrast, FmhC incorporates a single serine at position 5. Serine incorporation also lowers resistance toward oxacillin, an antibiotic that targets penicillin-binding proteins, in both methicillin-sensitive and methicillin-resistant strains of S. aureus. FmhC is encoded by a gene immediately adjacent to lytN, which specifies a hydrolase that cleaves the bond between the fifth glycine of cross-bridges and the alanine of the adjacent stem peptide. In this manner, LytN facilitates the separation of daughter cells. Cell wall damage induced upon lytN overexpression can be alleviated by overexpression of fmhC. Together, these observations suggest that FmhA and FmhC generate peptidoglycan cross-bridges with unique serine patterns that provide protection from endogenous murein hydrolases governing cell division and from bacteriocins produced by microbial competitors.


1991 ◽  
Vol 98 (4) ◽  
pp. 657-679 ◽  
Author(s):  
M Yamakawa ◽  
Y E Goldman

Kinetics of the cross-bridge cycle in insect fibrillar flight muscle have been measured using laser pulse photolysis of caged ATP and caged inorganic phosphate (Pi) to produce rapid step increases in the concentration of ATP and Pi within single glycerol-extracted fibers. Rapid photochemical liberation of 100 microM-1 mM ATP from caged ATP within a fiber caused relaxation in the absence of Ca2+ and initiated an active contraction in the presence of approximately 30 microM Ca2+. The apparent second order rate constant for detachment of rigor cross-bridges by ATP was between 5 x 10(4) and 2 x 10(5) M-1s-1. This rate is not appreciably sensitive to the Ca2+ or Pi concentrations or to rigor tension level. The value is within an order of magnitude of the analogous reaction rate constant measured with isolated actin and insect myosin subfragment-1 (1986. J. Muscle Res. Cell Motil. 7:179-192). In both the absence and presence of Ca2+ insect fibers showed evidence of transient cross-bridge reattachment after ATP-induced detachment from rigor, as found in corresponding experiments on rabbit psoas fibers. However, in contrast to results with rabbit fibers, tension traces of insect fibers starting at different rigor tensions did not converge to a common time course until late in the transients. This result suggests that the proportion of myosin cross-bridges that can reattach into force-generating states depends on stress or strain in the filament lattice. A steady 10-mM concentration of Pi markedly decreased the transient reattachment phase after caged ATP photolysis. Pi also decreased the amplitude of stretch activation after step stretches applied in the presence of Ca2+ and ATP. Photolysis of caged Pi during stretch activation abruptly terminated the development of tension. These results are consistent with a linkage between Pi release and the steps leading to force production in the cross-bridge cycle.


1986 ◽  
Vol 103 (6) ◽  
pp. 2209-2227 ◽  
Author(s):  
J E Heuser

Freeze-etch preparation of the laminated bundles of microtubules in motile axostyles demonstrates that the cross-bridges populating individual layers or laminae are structurally similar to the dynein arms of cilia and flagellae. Also, like dynein, they are extracted by high salt and undergo a change in tilt upon removal of endogenous ATP (while the axostyle as a whole straightens and becomes stiff). On the other hand, the bridges running between adjacent microtubule laminae in the axostyle turn out to be much more delicate and wispy in appearance, and display no similarity to dynein arms. Thus we propose that the internal or "intra-laminar" cross-bridges are the active force-generating ATPases in this system, and that they generate overall bends or changes in the helical pitch of the axostyle by altering the longitudinal and lateral register of microtubules in each lamina individually; e.g., by "warping" each lamina and creating longitudinal shear forces within it. The cross-links between adjacent laminae, on the other hand, would then simply be force-transmitting elements that serve to translate the shearing forces generated within individual laminae into overall helical shape changes. (This hypothesis differs from the views of earlier workers who considered a more active role for the later cross-links, postulating that they cause an active sliding between adjacent layers that somehow leads to axostyle movement.) Also described here are physical connections between adjacent intra-laminar cross-bridges, structurally analogous to the overlapping components of the outer dynein arms of cilia and flagella. As with dynein, these may represent a mechanism for propagating local changes from cross-bridge to cross-bridge down the axostyle, as occurs during the passage of bends down the length of the organelle.


Sign in / Sign up

Export Citation Format

Share Document