scholarly journals Transfer function analysis of dynamic cerebral autoregulation in humans

1998 ◽  
Vol 274 (1) ◽  
pp. H233-H241 ◽  
Author(s):  
Rong Zhang ◽  
Julie H. Zuckerman ◽  
Cole A. Giller ◽  
Benjamin D. Levine

To test the hypothesis that spontaneous changes in cerebral blood flow are primarily induced by changes in arterial pressure and that cerebral autoregulation is a frequency-dependent phenomenon, we measured mean arterial pressure in the finger and mean blood flow velocity in the middle cerebral artery (V˙MCA) during supine rest and acute hypotension induced by thigh cuff deflation in 10 healthy subjects. Transfer function gain, phase, and coherence function between changes in arterial pressure andV˙MCA were estimated using the Welch method. The impulse response function, calculated as the inverse Fourier transform of this transfer function, enabled the calculation of transient changes inV˙MCA during acute hypotension, which was compared with the directly measured change in V˙MCA during thigh cuff deflation. Beat-to-beat changes inV˙MCA occurred simultaneously with changes in arterial pressure, and the autospectrum of V˙MCA showed characteristics similar to arterial pressure. Transfer gain increased substantially with increasing frequency from 0.07 to 0.20 Hz in association with a gradual decrease in phase. The coherence function was >0.5 in the frequency range of 0.07–0.30 Hz and <0.5 at <0.07 Hz. Furthermore, the predicted change inV˙MCA was similar to the measuredV˙MCA during thigh cuff deflation. These data suggest that spontaneous changes inV˙MCA that occur at the frequency range of 0.07–0.30 Hz are related strongly to changes in arterial pressure and, furthermore, that short-term regulation of cerebral blood flow in response to changes in arterial pressure can be modeled by a transfer function with the quality of a high-pass filter in the frequency range of 0.07–0.30 Hz.

2008 ◽  
Vol 109 (4) ◽  
pp. 642-650 ◽  
Author(s):  
Yojiro Ogawa ◽  
Ken-ichi Iwasaki ◽  
Ken Aoki ◽  
Wakako Kojima ◽  
Jitsu Kato ◽  
...  

Background Dexmedetomidine, which is often used in intensive care units in patients with compromised circulation, might induce further severe decreases in cerebral blood flow (CBF) with temporal decreases in arterial pressure induced by various stimuli if dynamic cerebral autoregulation is not improved. Therefore, the authors hypothesized that dexmedetomidine strengthens dynamic cerebral autoregulation. Methods Fourteen healthy male subjects received placebo, low-dose dexmedetomidine (loading, 3 microg x kg(-1) x h(-1) for 10 min; maintenance, 0.2 microg x kg(-1) x h(-1) for 60 min), and high-dose dexmedetomidine (loading, 6 microg x kg(-1) x h(-1) for 10 min; maintenance, 0.4 microg x kg(-1) x h(-1) for 60 min) infusions in a randomized, double-blind, crossover study. After 70 min of drug administration, dynamic cerebral autoregulation was estimated by transfer function analysis between arterial pressure variability and CBF velocity variability, and the thigh cuff method. Results Compared with placebo, steady state CBF velocity and mean blood pressure significantly decreased during administration of dexmedetomidine. Transfer function gain in the very-low-frequency range increased and phase in the low-frequency range decreased significantly, suggesting alterations in dynamic cerebral autoregulation in lower frequency ranges. Moreover, the dynamic rate of regulation and percentage restoration in CBF velocity significantly decreased when a temporal decrease in arterial pressure was induced by thigh cuff release. Conclusion Contrary to the authors' hypothesis, the current results of two experimental analyses suggest together that dexmedetomidine weakens dynamic cerebral autoregulation and delays restoration in CBF velocity during conditions of decreased steady state CBF velocity. Therefore, dexmedetomidine may lead to further sustained reductions in CBF during temporal decreases in arterial pressure.


2014 ◽  
Vol 36 (5) ◽  
pp. 563-575 ◽  
Author(s):  
Aisha S.S. Meel-van den Abeelen ◽  
Arenda H.E.A. van Beek ◽  
Cornelis H. Slump ◽  
Ronney B. Panerai ◽  
Jurgen A.H.R. Claassen

Cephalalgia ◽  
2018 ◽  
Vol 39 (5) ◽  
pp. 635-640 ◽  
Author(s):  
Cédric Gollion ◽  
Nathalie Nasr ◽  
Nelly Fabre ◽  
Michèle Barège ◽  
Marc Kermorgant ◽  
...  

Background Migraine with aura is independently associated with increased risk of ischemic stroke, especially in younger subjects. This association might be related to an impairment of cerebral autoregulation, which normally maintains cerebral blood flow independent of arterial blood pressure variations. Methods Patients aged 30–55, fulfilling ICHD-3 beta criteria for migraine with aura, were prospectively enrolled and compared with gender- and age-matched healthy controls without a history of migraine. Patients and controls with a history of stroke or any disease potentially impairing cerebral autoregulation were excluded. We assessed cerebral autoregulation with two different methods: Transfer function analysis, and the correlation coefficient index Mx. The transfer function phase and gain reflect responses of cerebral blood flow velocities to relatively fast fluctuations of arterial blood pressure, whereas Mx also reflects responses to slower arterial blood pressure fluctuations. Results A total of 22 migraine with aura patients (median age [IQR]: 39.5 [12.5] years) and 22 controls (39 [9.75] years) were included. Transfer function parameters and Mx were not different between patients and controls. However, Mx was inversely correlated with age in patients (ρ = −0.567, p = 0.006) and not in controls (ρ = −0.084, p = 0.509). Mx was also inversely correlated with migraine with aura duration (ρ = −0.617, p = 0.002), suggesting improvement of cerebral autoregulation efficiency with disease duration. Conclusions Cerebral autoregulation did not differ between patients and controls aged 30–55. However, cerebral autoregulation efficiency was strongly correlated with migraine with aura duration. Further studies in younger patients are needed to determine whether cerebral autoregulation is impaired early in the course of disease. Trial Registration NCT02708797.


2008 ◽  
Vol 104 (2) ◽  
pp. 490-498 ◽  
Author(s):  
Philip N. Ainslie ◽  
Shigehiko Ogoh ◽  
Katie Burgess ◽  
Leo Celi ◽  
Ken McGrattan ◽  
...  

We hypothesized that 1) acute severe hypoxia, but not hyperoxia, at sea level would impair dynamic cerebral autoregulation (CA); 2) impairment in CA at high altitude (HA) would be partly restored with hyperoxia; and 3) hyperoxia at HA and would have more influence on blood pressure (BP) and less influence on middle cerebral artery blood flow velocity (MCAv). In healthy volunteers, BP and MCAv were measured continuously during normoxia and in acute hypoxia (inspired O2 fraction = 0.12 and 0.10, respectively; n = 10) or hyperoxia (inspired O2 fraction, 1.0; n = 12). Dynamic CA was assessed using transfer-function gain, phase, and coherence between mean BP and MCAv. Arterial blood gases were also obtained. In matched volunteers, the same variables were measured during air breathing and hyperoxia at low altitude (LA; 1,400 m) and after 1–2 days after arrival at HA (∼5,400 m, n = 10). In acute hypoxia and hyperoxia, BP was unchanged whereas it was decreased during hyperoxia at HA (−11 ± 4%; P < 0.05 vs. LA). MCAv was unchanged during acute hypoxia and at HA; however, acute hyperoxia caused MCAv to fall to a greater extent than at HA (−12 ± 3 vs. −5 ± 4%, respectively; P < 0.05). Whereas CA was unchanged in hyperoxia, gain in the low-frequency range was reduced during acute hypoxia, indicating improvement in CA. In contrast, HA was associated with elevations in transfer-function gain in the very low- and low-frequency range, indicating CA impairment; hyperoxia lowered these elevations by ∼50% ( P < 0.05). Findings indicate that hyperoxia at HA can partially improve CA and lower BP, with little effect on MCAv.


2016 ◽  
Vol 120 (12) ◽  
pp. 1434-1441 ◽  
Author(s):  
Sung-Moon Jeong ◽  
Seon-Ok Kim ◽  
Darren S. DeLorey ◽  
Tony G. Babb ◽  
Benjamin D. Levine ◽  
...  

Cerebral vasomotor reactivity (CVMR) and dynamic cerebral autoregulation (CA) are measured extensively in clinical and research studies. However, the relationship between these measurements of cerebrovascular function is not well understood. In this study, we measured changes in cerebral blood flow velocity (CBFV) and arterial blood pressure (BP) in response to stepwise increases in inspired CO2 concentrations of 3 and 6% to assess CVMR and dynamic CA in 13 healthy young adults [2 women, 32 ± 9 (SD) yr]. CVMR was assessed as percentage changes in CBFV (CVMRCBFV) or cerebrovascular conductance index (CVCi, CVMRCVCi) in response to hypercapnia. Dynamic CA was estimated by performing transfer function analysis between spontaneous oscillations in BP and CBFV. Steady-state CBFV and CVCi both increased exponentially during hypercapnia; CVMRCBFV and CVMRCVCi were greater at 6% (3.85 ± 0.90 and 2.45 ± 0.79%/mmHg) than at 3% CO2 (2.09 ± 1.47 and 0.21 ± 1.56%/mmHg, P = 0.009 and 0.005, respectively). Furthermore, CVMRCBFV was greater than CVMRCVCi during either 3 or 6% CO2 ( P = 0.017 and P < 0.001, respectively). Transfer function gain and coherence increased in the very low frequency range (0.02-0.07 Hz), and phase decreased in the low-frequency range (0.07–0.20 Hz) when breathing 6%, but not 3% CO2. There were no correlations between the measurements of CVMR and dynamic CA. These findings demonstrated influences of inspired CO2 concentrations on assessment of CVMR and dynamic CA. The lack of correlation between CVMR and dynamic CA suggests that cerebrovascular responses to changes in arterial CO2 and BP are mediated by distinct regulatory mechanisms.


2010 ◽  
Vol 108 (5) ◽  
pp. 1162-1168 ◽  
Author(s):  
Yu-Chieh Tzeng ◽  
Samuel J. E. Lucas ◽  
Greg Atkinson ◽  
Chris K. Willie ◽  
Philip N. Ainslie

The functional relationship between dynamic cerebral autoregulation (CA) and arterial baroreflex sensitivity (BRS) in humans is unknown. Given that adequate cerebral perfusion during normal physiological challenges requires the integrated control of CA and the arterial baroreflex, we hypothesized that between-individual variability in dynamic CA would be related to BRS in humans. We measured R-R interval, blood pressure, and cerebral blood flow velocity (transcranial Doppler) in 19 volunteers. BRS was estimated with the modified Oxford method (nitroprusside-phenylephrine injections) and spontaneous low-frequency (0.04–0.15) α-index. Dynamic CA was quantified using the rate of regulation (RoR) and autoregulatory index (ARI) derived from the thigh-cuff release technique and transfer function analysis of spontaneous oscillations in blood pressure and mean cerebral blood flow velocity. Results show that RoR and ARI were inversely related to nitroprusside BRS [ R = −0.72, confidence interval (CI) −0.89 to −0.40, P = 0.0005 vs. RoR; R = −0.69, CI −0.88 to −0.35, P = 0.001 vs. ARI], phenylephrine BRS ( R = −0.66, CI −0.86 to −0.29, P = 0.0002 vs. RoR; R = −0.71, CI −0.89 to −0.38, P = 0.0001 vs. ARI), and α-index ( R = −0.70, CI −0.89 to −0.40, P = 0.0008 vs. RoR; R = −0.62, CI −0.84 to −0.24, P = 0.005 vs. ARI). Transfer function gain was positively related to nitroprusside BRS ( R = 0.62, CI 0.24–0.84, P = 0.0042), phenylephrine BRS ( R = 0.52, CI 0.10–0.79, P = 0.021), and α-index ( R = 0.69, CI 0.35–0.88, P = 0.001). These findings indicate that individuals with an attenuated dynamic CA have greater BRS (and vice versa), suggesting the presence of possible compensatory interactions between blood pressure and mechanisms of cerebral blood flow control in humans. Such compensatory adjustments may account for the divergent changes in dynamic CA and BRS seen, for example, in chronic hypotension and spontaneous hypertension.


2005 ◽  
Vol 288 (4) ◽  
pp. H1526-H1531 ◽  
Author(s):  
Shigehiko Ogoh ◽  
Paul J. Fadel ◽  
Rong Zhang ◽  
Christian Selmer ◽  
Øivind Jans ◽  
...  

Exercise challenges cerebral autoregulation (CA) by a large increase in pulse pressure (PP) that may make systolic pressure exceed what is normally considered the upper range of CA. This study examined the relationship between systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) and systolic ( Vs), diastolic ( Vd). and mean ( Vm) middle cerebral artery (MCA) blood flow velocity during mild, moderate, and heavy cycling exercise. Dynamic CA and steady-state changes in MCA V in relation to changes in arterial pressure were evaluated using transfer function analysis. PP increased by 37% and 57% during moderate and heavy exercise, respectively ( P < 0.05), and the pulsatility of MCA V increased markedly. Thus exercise increased MCA Vm and Vs ( P < 0.05) but tended to decrease MCA Vd ( P = 0.06). However, the normalized low-frequency transfer function gain between MAP and MCA Vm and between SBP and MCA Vs remained unchanged from rest to exercise, whereas that between DBP and MCA Vd increased from rest to heavy exercise ( P < 0.05). These findings suggest that during exercise, CA is challenged by a rapid decrease rather than by a rapid increase in blood pressure. However, dynamic CA remains able to modulate blood flow around the exercise-induced increase in MCA Vm, even during high-intensity exercise.


2010 ◽  
Vol 31 (1) ◽  
pp. 283-292 ◽  
Author(s):  
Ken-Ichi Iwasaki ◽  
Rong Zhang ◽  
Julie H Zuckerman ◽  
Yojiro Ogawa ◽  
Lærke H Hansen ◽  
...  

Cerebral blood flow (CBF) increases and dynamic cerebral autoregulation is impaired by acute hypoxia. We hypothesized that progressive hypocapnia with restoration of arterial oxygen content after altitude acclimatization would normalize CBF and dynamic cerebral autoregulation. To test this hypothesis, dynamic cerebral autoregulation was examined by spectral and transfer function analyses between arterial pressure and CBF velocity variabilities in 11 healthy members of the Danish High-Altitude Research Expedition during normoxia and acute hypoxia (10.5% O2) at sea level, and after acclimatization (for over 1 month at 5,260 m at Chacaltaya, Bolivia). Arterial pressure and CBF velocity in the middle cerebral artery (transcranial Doppler), were recorded on a beat-by-beat basis. Steady-state CBF velocity increased during acute hypoxia, but normalized after acclimatization with partial restoration of SaO2 (acute, 78%±2%; chronic, 89%±1%) and progression of hypocapnia (end-tidal carbon dioxide: acute, 34±2 mm Hg; chronic, 21±1 mm Hg). Coherence (0.40±0.05 Units at normoxia) and transfer function gain (0.77±0.13 cm/s per mm Hg at normoxia) increased, and phase (0.86±0.15 radians at normoxia) decreased significantly in the very-low-frequency range during acute hypoxia (gain, 141%±24%; coherence, 136%±29%; phase, −25%±22%), which persisted after acclimatization (gain, 136%±36%; coherence, 131%±50%; phase, −42%±13%), together indicating impaired dynamic cerebral autoregulation in this frequency range. The similarity between both acute and chronic conditions suggests that dynamic cerebral autoregulation is impaired by hypoxia even after successful acclimatization to an extreme high altitude.


2012 ◽  
Vol 113 (8) ◽  
pp. 1194-1200 ◽  
Author(s):  
Can Ozan Tan

Reliable assessment of cerebrovascular effectiveness in buffering against pressure fluctuations may have important implications for the timing and the outcome of therapy after adverse cerebrovascular events. Although linear approaches may indicate the presence or absence of cerebral autoregulation, they are inadequate to describe its characteristics and its effectiveness. Establishing a simple yet robust methodology to reliably measure the effectiveness of cerebral autoregulation could provide a tool to guide screening and clinical options to characterize and treat adverse cerebrovascular events associated with alterations in cerebral perfusion. To test the utility of one such methodology, an oscillatory lower body negative pressure of 30–40 mmHg was used at six frequencies from 0.03 to 0.08 Hz in 43 healthy volunteers, and the pressure-flow relation and the effectiveness of autoregulation was quantified using projection pursuit regression. Projection pursuit regression explained the majority of the relationship between pressure and cerebral blood flow fluctuations and revealed its nature consistently across individuals and across separate study days. The nature of this relationship entailed an autoregulatory region wherein slow arterial pressure fluctuations are effectively counterregulated and two passive regions wherein pressure fluctuations resulted in parallel changes in flow. The effectiveness of autoregulation was significantly reduced as pressure fluctuations became faster. These results demonstrate the characteristic relationship between arterial pressure and cerebral blood flow. Furthermore, the methodology utilized in this study provides a tool that can provide unique insight to integrated cerebrovascular control and may allow diagnosis of physiological alterations underlying impaired cerebral autoregulation.


2018 ◽  
Vol 125 (5) ◽  
pp. 1627-1635 ◽  
Author(s):  
Shigehiko Ogoh ◽  
Jeung-Ki Yoo ◽  
Mark B. Badrov ◽  
Rosemary S. Parker ◽  
Elizabeth H. Anderson ◽  
...  

Posttraumatic stress disorder (PTSD) is associated with structural and functional alterations in a number of interacting brain regions, but the physiological mechanism for the high risk of cerebrovascular disease or impairment in brain function remains unknown. Women are more likely to develop PTSD after a trauma than men. We hypothesized that cerebral blood flow (CBF) regulation is impaired in women with PTSD, and it is associated with impairment in cognitive function. To test our hypothesis, we examined dynamic cerebral autoregulation (CA) and cognitive function by using a transfer function analysis between arterial pressure and middle cerebral artery blood velocity and the Stroop Color and Word test (SCWT), respectively. We did not observe any different responses in these hemodynamic variables between women with PTSD ( n = 15) and healthy counterparts (all women; n = 8). Cognitive function was impaired in women with PTSD; specifically, reaction time for the neutral task of SCWT was longer in women with PTSD compared with healthy counterparts ( P = 0.011), but this cognitive dysfunction was not affected by orthostatic stress. On the other hand, transfer function phase, gain, and coherence were not different between groups in either the supine or head-up tilt (60°) position, or even during the cognitive challenge, indicating that dynamic CA was well maintained in women with PTSD. In addition, there was no relationship between cognitive function and dynamic CA. These findings suggest that PTSD-related cognitive dysfunction may not be due to compromised CBF regulation. NEW & NOTEWORTHY Cognitive function was impaired; however, dynamic cerebral autoregulation (CA) as an index of cerebral blood flow regulation was not impaired during supine and 60° head-up tilt in women with PTSD compared with healthy females. In addition, there was no relationship between cognitive function and dynamic CA. These findings suggest that the mechanism of PTSD-related cognitive dysfunction may not be due to CBF regulation.


Sign in / Sign up

Export Citation Format

Share Document