Chronic regulation of arterial blood pressure by ANP: role of endogenous vasoactive endothelial factors

1998 ◽  
Vol 275 (5) ◽  
pp. H1826-H1833 ◽  
Author(s):  
L. G. Melo ◽  
A. T. Veress ◽  
U. Ackermann ◽  
H. Sonnenberg

Atrial natriuretic peptide (ANP) exerts a chronic hypotensive effect due to a decrease in total peripheral resistance (TPR). This study examines if chronic ANP-dependent vasodilation is attributable to differences in the cardiovascular regulatory activity of vascular endothelium (VE), based on evidence that ANP affects synthesis/release and target cardiovascular effects of endothelin-1 (ET-1), C-type natriuretic peptide (CNP), and nitric oxide (NO). To determine if the synthetic activity of resistance vasculature VE is chronically altered by plasma ANP activity, we measured ET-1, CNP, and endothelial constitutive NO synthase (ecNOS) concentration and total NOS enzyme activity in homogenates of kidney, heart, lung, hindquarter skeletal muscle, and brain from hypotensive transgenic mice with elevated plasma ANP, hypertensive knockout mice (−/−) characterized by the absence of ANP, and the corresponding normotensive wild-type (NT, +/+) mice. Tissue distribution and abundance patterns of ET-1, CNP, ecNOS, and NOS enzyme activity were comparable between the different genotypes and did not differ significantly between mutant and control mice. Antagonism of ETA/B receptors in −/− and +/+ mice in vivo with SB-209670 reduced arterial blood pressure (ABP) significantly and comparably in both genotypes (−27 ± 4 and −25 ± 2% change for −/− and +/+ mice, respectively) independent of any significant changes in heart rate (HR) (−6 ± 8 and −4 ± 4% change for −/− and +/+ mice, respectively). Immunoneutralization of CNP-specific guanylate cyclase-linked receptors (GC-B) with monoclonal antibodies (3G12) increased ABP slightly, but not significantly, by similar relative amounts in both −/− (10 ± 6% change) and +/+ mice (8 ± 3% change), without changing HR significantly (4 ± 1% change for both +/+ and −/− mice). Inhibition of NOS activity (by N G-nitro-l-arginine methyl ester) significantly increased ABP, but the changes were comparable between −/− (53 ± 5% change) and +/+ mice (50 ± 6% change) and occurred in the absence of significant changes in HR (−1 ± 5 and 7 ± 5% change for −/− and +/+ mice, respectively). We conclude that the differences in ABP associated with chronic variations in endogenous ANP activity are not due to alterations in synthesis or responsiveness of the cardiovascular system to the effects of ET-1, CNP, or NO.

1984 ◽  
Vol 62 (7) ◽  
pp. 819-826 ◽  
Author(s):  
Uwe Ackermann ◽  
Terumi G. Irizawa ◽  
Susan Milojevic ◽  
Harald Sonnenberg

Tissue extracts derived from atria or ventricles of Sprague–Dawley rats were injected into Inactin-anesthetized assay rats. Compared with ventricular extracts, atrial extracts produced a 20 mmHg (1 mmHg = 133.322 Pa) fall in mean arterial blood pressure. This fall resulted from failure to increase cardiac output in compensation for peripheral vasodilation. Two factors were responsible: depression of heart rate (by 25 beats/min) and failure to increase cardiac performance. The time patterns and magnitudes of changes in cardiovascular parameters after cardiac extracts were not changed by prior atropinization. However, assay rats that were vagotomized showed no cardiac slowing after atrial extract and showed a significantly smaller decrease in mean arterial blood pressure than did sham-vagotomized or intact rats. Another group of assay rats was vagotomized as well as carotid-sinus-denervated before extract injection. In these rats the degree of hypotension caused by atrial extract was significantly greater than that observed after vagotomy alone and was not significantly different from that observed in rats with intact innervation. The results suggest that the hypotension that is caused by atrial extract, but not by ventricular extracts, results in part from the reflex effects of direct stimulation of chemosensitive cardiopulmonary receptors with vagal afferents and partly from the reflex effects of baroreceptor unloading. Ventricular extract had no hypotensive effect in any group of assay rats.


1983 ◽  
Vol 61 (6) ◽  
pp. 561-566 ◽  
Author(s):  
Peter Vadas ◽  
John B. Hay

This study examined the role of plasma phospholipase A2 (PLA2) in the mediation of the hypotension associated with experimental endotoxin shock in rabbits. Endotoxin shock was induced in rabbits, and mean arterial blood pressure and plasma PLA2 levels were monitored. Serial plasma PLA2 determinations over 5 h showed an 11-fold increase in circulating enzyme activity, and the rise in circulating enzyme activity was directly related to the fall in mean arterial blood pressure. Pretreatment of rabbits with glucocorticoids abrogated the hypotensive effect of endotoxin, and also inhibited a rise in plasma PLA2 activity. To determine if the rise in PLA2 activity was simply a mechanistically unrelated epiphenomenon, the effect of infusion of exogenous PLA2 (purified from the blood of rabbits in endotoxin shock) was investigated. Infusion of the exogenous enzyme into normal rabbits caused a fall in mean arterial blood pressure, and the rate of fall of blood pressure paralleled that induced by endotoxin itself. Treatment of the PLA2-active fraction, prior to infusion with the PLA2 inhibitor, p-bromophenacyl bromide, protected against this hypotensive effect. These data are consistent with the postulate that the endotoxin-induced release of massive amounts of PLA2 into the systemic circulation in rabbits contributes significantly to the hypotension associated with septic shock.


1992 ◽  
Vol 133 (2) ◽  
pp. R1-R4 ◽  
Author(s):  
C. Bjenning ◽  
Y. Takei ◽  
T.X. Watanabe ◽  
K. Nakajima ◽  
S. Sakakibara ◽  
...  

ABSTRACT The effects of an elasmbranch cardiac C-type natriuretic peptide (dogfish CNP-22) on arterial blood pressure were investigated in vivo in chronically cannulated dogfish Scyliorhinus canicula and in vitro by a myographic technique using the distal part of the first branchial artery. In-vivo dogfish CNP-22 caused a dose-dependent reduction in mean arterial blood pressure which was much more potent than that of α-human ANP. In-vitro dogfish CNP-22 also caused a dose-dependent relaxation which was independent of the endothelium. These results are in marked contrast to those obtained in similar studies on other vertebrate species in which CNP exhibited only mild hypotensive effects compared to both atrial and brain natriuretic peptides. This study indicates the importance of using homologous peptides in determing the physiological role of natriuretic peptides in non-mammalian vertebrates.


2020 ◽  
Vol 20 (8) ◽  
pp. 1253-1261
Author(s):  
Mourad Akdad ◽  
Mohamed Eddouks

Aims: The present study was performed in order to analyze the antihypertensive activity of Micromeria graeca (L.) Benth. ex Rchb. Background: Micromeria graeca (L.) Benth. ex Rchb is an aromatic and medicinal plant belonging to the Lamiaceae family. This herb is used to treat various pathologies such as cardiovascular disorders. Meanwhile, its pharmacological effects on the cardiovascular system have not been studied. Objective: The present study aimed to evaluate the effect of aqueous extract of aerial parts of Micromeria graeca (AEMG) on the cardiovascular system in normotensive and hypertensive rats. Methods: In this study, the cardiovascular effect of AEMG was evaluated using in vivo and in vitro investigations. In order to assess the acute effect of AEMG on the cardiovascular system, anesthetized L-NAME-hypertensive and normotensive rats received AEMG (100 mg/kg) orally and arterial blood pressure parameters were monitored during six hours. In the sub-chronic study, rats were orally treated for one week, followed by blood pressure assessment during one week of treatment. Blood pressure was measured using a tail-cuff and a computer-assisted monitoring device. In the second experiment, isolated rat aortic ring pre-contracted with Epinephrine (EP) or KCl was used to assess the vasorelaxant effect of AEMG. Results: Oral administration of AEMG (100 mg/kg) provoked a decrease of arterial blood pressure parameters in hypertensive rats. In addition, AEMG induced a vasorelaxant effect in thoracic aortic rings pre-contracted with EP (10 μM) or KCl (80 mM). This effect was attenuated in the presence of propranolol and methylene blue. While in the presence of glibenclamide, L-NAME, nifedipine or Indomethacin, the vasorelaxant effect was not affected. Conclusion: This study showed that Micromeria graeca possesses a potent antihypertensive effect and relaxes the vascular smooth muscle through β-adrenergic and cGMP pathways.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Dao Wen Wang ◽  
Bin Xiao ◽  
Yong Wang ◽  
Xiaojun Xiong ◽  
Darryl C Zeldin

Cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) have potent vasodilatory and diuretic feature, and therefore potentially hypotensive effect. No in vivo studies, however, were performed to support it. This study investigated the hypothesis via overexpressing CYP epoxygense genes in spontaneously hypertensive rats (SHR). Recombinant adeno-associated virus vector (rAAV) was utilized to mediate long-term transfection of CYP2J2 and CYP2C11 genes, respectively, in adult SHR, and animal systolic blood pressure (SBP) was monitored using arterial caudilis indirect manometric method. Results showed that at 2 months the urinary excretion of stable hydrolysis metabolic product of 14, 15-EE, 14–15-DHET increased by 11 and 8.7 folds in rAAV-2J2 and rAAV-2C11 groups, respectively, compared with AAV-GFP-treated rats. (2) SBP in 2J2- and 2C11-treated rats decreased from 175.0 ± 2.8mHg to 163.5 ± 5.8mmHg and 161.2 ± 6.1 mmHg, respectively, ( p <0.01) at month 2, and it is 165.0 ± 4.7 mmHg and 173.0 ± 12.8 mmHg at month 6 after gene injection (~30mmHg and ~23mmHg lowerer than that in control animals, respectively, p <0.001). (3) Before the rats were sacrificed, cardiac function tests with Pressure-Volume System showed that maximum intracardiac pressure was 202.1 ± 30.0 & 209.1 ± 17.1mmHg in two gene-treated rats, respectively, significantly lower than control (241.2 ± 18.2mmHg, p <0.01) and cardiac output in treatment rats were significantly higher than control (p<0.05). (4) Interestingly, atrial natriuretic peptide (ANP) mRNA were up-regulated 6–14 folds respectively in myocardium of 2J2 and 2C11 groups; furthermore, C-type receptor mRNA of ANP was increased in heart, lung, kidney and aorta. (5) in cultured atrial cells (HLB2G5), exogenous EETs stimulated ANP production. In conclusions, for first time our data indicates overexpression of CYP2J2 or CYP2C11 could prevent development of hypertension in SHR, improve cardiac functions, which may involve up-regulating ANP expression and its receptors in target tissues, which suppresses collagen deposition and cardiovascular remodeling.


Author(s):  
G.F. Stegmann

The cardiovascular effects of non-abdominal and abdominal surgery during isoflurane anaesthesia (A-group) or isoflurane anaesthesia supplemented with either epidural ropivacaine (AR-group; 0.75 % solution, 0.2 mℓ/kg) or morphine (AM-group; 0.1 mg/kg diluted in saline to 0.2mℓ/kg) were evaluated in 28 healthy pigs with a mean body weight of 30.3 kg SD ± 4.1 during surgical devascularisation of the liver. Anaesthesia was induced with the intramuscular injection of midazolam (0.3 mg/kg) and ketamine (10 mg/kg). Anaesthesia was deepened with intravenous propofol to enable tracheal intubation and maintained with isoflurane on a circle rebreathing circuit. The vaporiser was set at 2.5% for the A-group and 1.5% for the AR- and AM-groups. Differences between treatment groups were not statistically significant (P>0.05) for any of the variables. Differences between AM- and AR-groups were marginally significant heart rate (HR) (P = 0.06) and mean arterial blood pressure (MAP) (P = 0.08). Within treatment groups, differences for the A-group were statistically significant (P<0.05) between non-abdominal and abdominal surgery for HR, systolic blood pressure, diastolic blood pressure (DIA) and MAP. Within the AM-group differences were statistically significant (P < 0.05) for DIA and MAP, and within the AR group differences for all variables were not statistically significant (P > 0.05). It was concluded that in isoflurane-anaesthetised pigs, the epidural administration of ropivacaine decreased heart rate and improved arterial blood pressure during surgery.


1991 ◽  
Vol 260 (1) ◽  
pp. H254-H259
Author(s):  
R. Maass-Moreno ◽  
C. F. Rothe

We tested the hypothesis that the blood volumes of the spleen and liver of cats are reflexly controlled by the carotid sinus (CS) baroreceptors. In pentobarbital-anesthetized cats the CS area was isolated and perfused so that intracarotid pressure (Pcs) could be controlled while maintaining a normal brain blood perfusion. The volume changes of the liver and spleen were estimated by measuring their thickness using ultrasonic techniques. Cardiac output, systemic arterial blood pressure (Psa), central venous pressure, central blood volume, total peripheral resistance, and heart rate were also measured. In vagotomized cats, increasing Pcs by 100 mmHg caused a significant reduction in Psa (-67.8%), cardiac output (-26.6%), total peripheral resistance (-49.5%), and heart rate (-15%) and significantly increased spleen volume (9.7%, corresponding to a 2.1 +/- 0.5 mm increase in thickness). The liver volume decreased, but only by 1.6% (0.6 +/- 0.2 mm decrease in thickness), a change opposite that observed in the spleen. The changes in cardiovascular variables and in spleen volume suggest that the animals had functioning reflexes. These results indicate that in pentobarbital-anesthetized cats the carotid baroreceptors affect the volume of the spleen but not the liver and suggest that, although the spleen has an active role in the control of arterial blood pressure in the cat, the liver does not.


2016 ◽  
Vol 94 (10) ◽  
pp. 1102-1105 ◽  
Author(s):  
Suzana Branković ◽  
Bojana Miladinović ◽  
Mirjana Radenković ◽  
Marija Gočmanac Ignjatović ◽  
Milica Kostić ◽  
...  

The aim of this study was to evaluate the effects of black currant (Ribes nigrum L. ‘Ben Sarek’) juice on the blood pressure and frequency of cardiac contractions, as well as vasomotor responses of rat aortic rings. Arterial blood pressure was measured directly from the carotid artery in the anaesthetized rabbits. The aortic rings were pre-contracted with KCl (80 mmol·L−1), after which black currant juice was added. An intravenous injection of black currant juice (0.33–166.5 mg·kg−1) induced a significant and dose-dependent decrease of rabbit arterial blood pressure and heart rate. The black currant juice decreased arterial blood pressure of rabbit by 22.33% ± 3.76% (p < 0.05) and heart rate by 17.18% ± 2.93% (p < 0.05). Cumulative addition of the black currant juice (0.01–3 mg·mL−1) inhibited concentration-dependent KCl induced contractions of the isolated rat aorta. The black currant juice, at the concentration of 3 mg·mL−1, caused a maximum relaxation of 21.75% ± 3.15% (p < 0.05). These results demonstrate that black currant juice can induce hypotension. The hypotensive effect of the black currant may occur as the consequence of its inhibitory activity on the rate of heart contraction and vasorelaxant effects.


1987 ◽  
Vol 252 (2) ◽  
pp. F299-F303 ◽  
Author(s):  
P. C. Churchill ◽  
A. Bidani

Exogenous adenosine affects renal hemodynamics, renal tubular transport processes, and the secretion of renin. However, adenosine is not a selective agonist; it activates both A1 and A2 cell-surface receptors and it binds to an intracellular P-site that inhibits adenylate cyclase activity. Recent in vitro studies have suggested that activation of A1- and A2- adenosine receptors results in opposite effects on renin secretion. The purpose of these experiments was to examine the renal effects of A1- and A2-adenosine receptor agonists in vivo. 5'-N-ethylcarboxamide adenosine (NECA), 2-chloroadenosine (2-CLA), and N6-cyclohexyladenosine (CHA) were infused intravenously at rates that produced comparable decreases in systemic arterial blood pressure. All three of these adenosine analogues produced comparable decreases in para-aminohippurate (PAH) and inulin clearances and in Na and K excretion rates. CHA, an A1-selective agonist, markedly decreased plasma renin concentration (PRC), whereas NECA, an A2-selective agonist, markedly increased PRC; 2-CLA, a nonselective agonist, produced a smaller increase in PRC. Taken together, these results suggest that occupation of A1- and A2-receptors inhibits and stimulates renin secretion in vivo, independently of the effects of these adenosine receptor agonists on arterial blood pressure, renal hemodynamics, and tubular Na and K transport.


Sign in / Sign up

Export Citation Format

Share Document