scholarly journals Changes in coronary endothelial cell Ca2+ concentration during shear stress- and agonist-induced vasodilation

1999 ◽  
Vol 276 (5) ◽  
pp. H1706-H1714 ◽  
Author(s):  
Judy M. Muller ◽  
Michael J. Davis ◽  
Lih Kuo ◽  
William M. Chilian

Increases in intraluminal shear stress are thought to cause vasodilation of coronary arterioles by activation of Ca2+-dependent endothelial nitric oxide synthase followed by release of nitric oxide. We tested the hypothesis that endothelium-dependent vasodilation of isolated coronary arterioles to shear stress and agonists is necessarily preceded by an increase in endothelial cell Ca2+concentration ([Ca2+]i). After selective loading of endothelium in isolated rabbit coronary arterioles with fura 2, simultaneous changes in diameter and [Ca2+]iwere recorded. Vasodilations recorded in response to ACh, substance P, or shear stress were accompanied by significant increases in endothelial cell [Ca2+]i. Vasodilations to shear stress were accompanied by smaller changes in endothelial cell [Ca2+]ithan equivalent dilations evoked by substance P or ACh. To test the role for Ca2+ as an activator of endothelial nitric oxide synthase, the endothelium was treated with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid. 1,2-Bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid eliminated significant changes in endothelial cell [Ca2+]iand inhibited dilations to ACh and substance P but did not significantly affect shear stress-induced vasodilation. The data indicate that endothelium-dependent vasodilation of coronary arterioles in response to agonists and shear stress is mediated in part through a rise in endothelial cell [Ca2+]ibut that a substantial component of the shear stress-induced response occurs through a Ca2+-insensitive pathway.

2013 ◽  
Vol 457 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Jihan Talib ◽  
Jair Kwan ◽  
Aldwin Suryo Rahmanto ◽  
Paul K. Witting ◽  
Michael J. Davies

The smoking-associated oxidant hypothiocyanous acid converts active dimeric endothelial cell nitric oxide synthase into its monomer form, decreases enzyme activity and releases Zn2+. This is ascribed to targeting of the critical Zn2+–thiol cluster by this thiol-specific oxidant.


1999 ◽  
Vol 19 (5) ◽  
pp. 1156-1161 ◽  
Author(s):  
Toyoaki Murohara ◽  
Bernhard Witzenbichler ◽  
Ioakim Spyridopoulos ◽  
Takayuki Asahara ◽  
Bo Ding ◽  
...  

2007 ◽  
Vol 293 (3) ◽  
pp. H1371-H1383 ◽  
Author(s):  
Xavier F. Figueroa ◽  
Chien-Chang Chen ◽  
Kevin P. Campbell ◽  
David N. Damon ◽  
Kathleen H. Day ◽  
...  

In the microcirculation, longitudinal conduction of vasomotor responses provides an essential means of coordinating flow distribution among vessels in a complex network. Spread of current along the vessel axis can display a regenerative component, which leads to propagation of vasomotor signals over many millimeters; the ionic basis for the regenerative response is unknown. We examined the responses to 10 s of focal electrical stimulation (30 Hz, 2 ms, 30 V) of mouse cremaster arterioles to test the hypothesis that voltage-dependent Na+ (Nav) and Ca2+ channels might be activated in long-distance signaling in microvessels. Electrical stimulation evoked a vasoconstriction at the site of stimulation and a spreading, nondecremental conducted dilation. Endothelial damage (air bubble) blocked conduction of the vasodilation, indicating an involvement of the endothelium. The Nav channel blocker bupivacaine also blocked conduction, and TTX attenuated it. The Nav channel activator veratridine induced an endothelium-dependent dilation. The Nav channel isoforms Nav1.2, Nav1.6, and Nav1.9 were detected in the endothelial cells of cremaster arterioles by immunocytochemistry. These findings are consistent with the involvement of Nav channels in the conducted response. BAPTA buffering of endothelial cell Ca2+ delayed and reduced the conducted dilation, which was almost eliminated by Ni2+, amiloride, or deletion of α1H T-type Ca2+ (Cav3.2) channels. Blockade of endothelial nitric oxide synthase or Ca2+-activated K+ channels also inhibited the conducted vasodilation. Our findings indicate that an electrically induced signal can propagate along the vessel axis via the endothelium and can induce sequential activation of Nav and Cav3.2 channels. The resultant Ca2+ influx activates endothelial nitric oxide synthase and Ca2+-activated K+ channels, triggering vasodilation.


Sign in / Sign up

Export Citation Format

Share Document