scholarly journals Resistance of endothelium-dependent relaxation to elevation of O 2 − levels in rabbit carotid artery

1999 ◽  
Vol 277 (5) ◽  
pp. H2109-H2114 ◽  
Author(s):  
Patrick J. Pagano ◽  
Mark C. Griswold ◽  
Soheil Najibi ◽  
Stefan L. Marklund ◽  
Richard A. Cohen

Endogenous superoxide anion[Formula: see text] interferes with the bioactivity of nitric oxide (NO) in endothelium-dependent arterial relaxation (EDR). Using the lucigenin chemiluminescence assay, we measured[Formula: see text] in the thoracic and abdominal aortas and the carotid artery of rabbits to determine whether ambient[Formula: see text] varies among the three arteries and differentially diminishes the effect of NO. Basal levels of[Formula: see text] were significantly higher in carotid arteries than in the thoracic aorta [23 ± 6.1 vs. 3.9 ± 1.4 chemiluminescence units (CU); P < 0.05], whereas EDR in response to ACh (10−8–10−5M) was not significantly different on ANOVA. After treatment with the superoxide dismutase (SOD) inhibitor diethyldithiocarbamate (DDC; 10 mM), [Formula: see text] levels were significantly elevated, becoming greater in the carotid artery and abdominal aorta than in the thoracic aorta (185 ± 31.2 and 202 ± 40.3 vs. 89 ± 18 CU; P < 0.05). DDC significantly reversed EDR in the thoracic aorta but not in the carotid artery; at 10−6 M ACh, the decrease seen with DDC was 48 ± 6.2 vs. 6.8 ± 8.0% of maximal relaxation in the thoracic aorta and carotid artery, respectively. In the thoracic aorta, exogenous SOD reversed the inhibition of EDR caused by DDC. Moreover, DDC/[Formula: see text]-resistant EDR in the carotid artery was ablated by the addition of nitro-l-arginine methyl ester (300 μM; P < 0.05), an NO synthase inhibitor, consistent with peroxynitrite or an[Formula: see text]-resistant NO donor being involved in carotid relaxation. Indeed, exogenous peroxynitrite caused similar relaxation of the carotid artery and thoracic aorta, which was unaffected by DDC. Our studies show a greater production of nitrite and[Formula: see text] per unit area by the carotid artery, suggesting a greater amount of their product peroxynitrite. These findings support the hypothesis that peroxynitrite is the relaxing agent that resists high [Formula: see text] in the carotid artery.

2004 ◽  
Vol 287 (6) ◽  
pp. H2448-H2453 ◽  
Author(s):  
Katherine A. Blackwell ◽  
Joseph P. Sorenson ◽  
Darcy M. Richardson ◽  
Leslie A. Smith ◽  
Osamu Suda ◽  
...  

Oxidative stress has been implicated as an important mechanism of vascular endothelial dysfunction induced by aging. Previous studies suggested that tetrahydrobiopterin (BH4), an essential cofactor of endothelial NO synthase, could be a molecular target for oxidation. We tested the hypothesis that oxidative stress, in particular oxidation of BH4, may contribute to attenuation of endothelium-dependent relaxation in aged mice. Vasomotor function of isolated carotid arteries was studied using a video dimension analyzer. Vascular levels of BH4 and its oxidation products were measured via HPLC. In aged mice (age, 95 ± 2 wk), endothelium-dependent relaxation to ACh (10−5 to 10−9 M) as well as endothelium-independent relaxation to the NO donor diethylammonium ( Z)-1-( N, N-diethylamino)diazen-1-ium -1,2-diolate (DEA-NONOate, 10−5 to 10−9 M) were significantly reduced compared with relaxation detected in young mice (age, 23 ± 0.5 wk). Incubation of aged mouse carotid arteries with the cell-permeable SOD mimetic Mn(III)tetra(4-benzoic acid)porphyrin chloride normalized relaxation to ACh and DEA-NONOate. Furthermore, production of superoxide anion in aorta and serum levels of amyloid P component, which is the murine analog of C-reactive protein, was increased in old mice. In aorta, neither the concentration of BH4 nor the ratio of reduced BH4 to the oxidation products were different between young and aged mice. Our results demonstrate that in mice, aging impairs relaxation mediated by NO most likely by increased formation of superoxide anion. Oxidation of BH4 does not appear to be an important mechanism underlying vasomotor dysfunction in aged mouse arteries.


2005 ◽  
Vol 152 (4) ◽  
pp. 551-556 ◽  
Author(s):  
Joaquín Ortega ◽  
José M Vila ◽  
María Dolores Mauricio ◽  
Gloria Segarra ◽  
Pascual Medina ◽  
...  

Objective: We studied the intervention of nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor (EDHF) in mediating responses to acetylcholine in thyroid arteries from euthyroid and methimazole-treated (MT) patients. Design and methods: Branches of the superior thyroid artery were obtained from 19 euthyroid patients and 17 MT patients (euthyroid at the time of surgery) undergoing total thyroidectomy or hemithyroidectomy. Artery rings were suspended in organ baths for isometric recording of tension. Results and conclusions: Acetylcholine caused endothelium-dependent relaxation of greater magnitude in arteries from MT patients (pD2 (−log EC50) values were 7.68±0.19 in euthyroid and 8.17±0.26 in MT patients, P <0.05). The relaxation was unaffected by indomethacin and was partially reduced by the NO-synthase inhibitor NG-monomethyl-l-arginine (l-NMMA). This reduction was higher in arteries from MT patients (50±6%) as compared with euthyroid patients (36±6%) (P <0.05). Inhibition of K+ channels using apamin combined with charybdotoxin or high K+ solution abolished the relaxation resistance to l-NMMA and indomethacin. The maximal contraction response to noradrenaline (as a percentage of the response to 100 mM KCl) was lower in MT than in euthyroid patients (57±10 and 96±8 respectively, P < 0.05). The hyporesponsiveness to noradrenaline in arteries from MT patients was corrected by l-NMMA. The results indicate that: (i) thyroid arteries from MT patients show an increased relaxation response to acethylcholine and a decreased contraction response to noradrenaline due to overproduction of NO; (ii) EDHF plays a prominent role in acetylcholine-induced relaxation through activation of Ca2+-activated K+ channels; (iii) the abnormal endothelium-dependent responses in arteries from MT patients are not corrected by medical treatment.


1999 ◽  
Vol 277 (4) ◽  
pp. H1622-H1629 ◽  
Author(s):  
Jarkko Kalliovalkama ◽  
Pasi Jolma ◽  
Jari-Petteri Tolvanen ◽  
Mika Kähönen ◽  
Nina Hutri-Kähönen ◽  
...  

Chronic renal failure is associated with increased cardiovascular morbidity and abnormal arterial tone, but the underlying pathophysiological mechanisms are poorly understood. Therefore, we studied the responses of isolated mesenteric arterial rings from Wistar-Kyoto rats in standard organ chambers 6 wk after subtotal (5/6) nephrectomy or sham operation. Subtotal nephrectomy resulted in a 1.7-fold elevation of plasma urea nitrogen, whereas blood pressure was not significantly affected. Endothelium-mediated relaxations of norepinephrine-precontracted rings to ACh were impaired in renal failure rats. The nitric oxide (NO) synthase inhibitor N G-nitro-l-arginine methyl ester inhibited relaxations to ACh more effectively in the renal failure group, whereas the cyclooxygenase inhibitor diclofenac did not significantly affect the response in either group. Inhibition of Ca2+-activated K+ channels by charybdotoxin and apamin attenuated NO synthase- and cyclooxygenase-resistant relaxations to ACh in control but not renal failure rats and abolished the difference between these groups. Endothelium-independent relaxations to isoproterenol and cromakalim, vasodilators acting via β-adrenoceptors and ATP-sensitive K+ channels, respectively, were impaired in the renal failure group, whereas relaxations to the NO donor nitroprusside were similar in both groups. In conclusion, endothelium-mediated relaxation in renal failure rats was impaired in the absence and presence of NO synthase and cyclooxygenase inhibition but not with prevented smooth muscle hyperpolarization. Endothelium-independent relaxations to isoproterenol and cromakalim were also attenuated after 5/6 nephrectomy. These results suggest that impaired vasodilatation in experimental renal failure could be attributed to reduced relaxation via arterial K+ channels.


1995 ◽  
Vol 268 (2) ◽  
pp. G207-G214 ◽  
Author(s):  
A. Rodriguez-Membrilla ◽  
V. Martinez ◽  
M. Jimenez ◽  
E. Gonalons ◽  
P. Vergara

The main objective was to study the role of nitric oxide (NO) in the conversion of migrating myoelectric complexes (MMC) to the irregular electrical activity characteristic of the postprandial state. Both rats and chickens were implanted with electrodes for electromyography in the small intestine. Intravenous infusion of NG-nitro-L-arginine (L-NNA), a NO synthase inhibitor, induced an organized MMC-like pattern in fed rats. Infusion of sodium nitroprusside, a NO donor, disrupted the MMC, inducing a postprandial-like motor pattern in fasting rats. Similarly, in chickens L-NNA mimicked the fasting pattern, consisting of a shortening of phase II, enlargement of phase III, orad displacement of the origin of the MMC, and an increase in the speed of phase III propagation. An inhibition of NO synthesis seems to be involved in the induction of the fasting motor pattern, whereas an increase of NO mediates the occurrence of the fed pattern. It is suggested that NO might be the final mediator in the control of small intestine motor patterns.


1996 ◽  
Vol 271 (3) ◽  
pp. H924-H930 ◽  
Author(s):  
T. S. Jackson ◽  
E. Lerner ◽  
R. M. Weisbrod ◽  
M. Tajima ◽  
J. Loscalzo ◽  
...  

Maxadilan is a peptide from the salivary gland of the sand fly Lutzomyia longipalpis, a vector for leishmaniasis. Cutaneous injection of femtomolar quantities of maxadilan produces long-lasting erythema, making it the most potent vasodilator known. Isolated rabbit thoracic and abdominal aorta, carotid artery, and iliac artery demonstrated dose-dependent arterial relaxation in response to maxadilan with a mean effective concentration (EC50) of 2.7 +/- 1.5, 2.1 +/- 0.5, 2.6 +/- 0.4, and 1.9 +/- 0.5 nM, respectively. Maxadilan proved to be at least sevenfold more potent than nitroglycerin in each arterial bed (EC50 = 25 +/- 12, 32 +/- 9, 37 +/- 10, and 22 +/- 13 nM, respectively; P < 0.05 for each vs. maxadilan). Arterial relaxation to maxadilan was independent of endothelium and was equipotent in the thoracic and abdominal aorta, carotid artery, and iliac artery. Arterial relaxation to maxadilan was not inhibited by K(+)-channel antagonists, methylene blue, quinacrine, or ouabain. Maxadilan-mediated arterial relaxation was found to be adenosine 3',5'-cyclic monophosphate (cAMP) dependent, as it was potentiated by the phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine and theophylline, and it was inhibited by the protein kinase A inhibitor H-89. Consistent with this observation, incubation of thoracic aorta with maxadilan (0.1 microM) produced a time-dependent increase in arterial cAMP content coincident with arterial relaxation. Using rabbit aortic smooth muscle cells, we also observed a time-dependent reduction in intracellular calcium in response to maxadilan. Thus these data indicate that maxadilan, a peptide from the sand fly salivary gland, is a potent vasodilator that reduces intracellular calcium through a cAMP-dependent mechanism.


2016 ◽  
Vol 310 (8) ◽  
pp. F755-F762 ◽  
Author(s):  
Peng Wu ◽  
Zhongxiuzi Gao ◽  
Shiwei Ye ◽  
Zhi Qi

We used patch-clamp techniques to examine whether nitric oxide (NO) decreases NaCl reabsorption by suppressing basolateral 10-pS Cl− channels in the thick ascending limb (TAL). Both the NO synthase substrate l-arginine (l-Arg) and the NO donor S-nitroso- N-acetylpenicillamine significantly inhibited 10-pS Cl− channel activity in the TAL. The inhibitory effect of l-Arg on Cl− channels was completely abolished in the presence of the NO synthase inhibitor or NO scavenger. Moreover, inhibition of soluble guanylyl cyclase abrogated the effect of l-Arg on Cl− channels, whereas the cGMP analog 8-bromo-cGMP (8-BrcGMP) mimicked the effect of l-Arg and significantly decreased 10-pS Cl− channel activity, indicating that NO inhibits basolateral Cl− channels by increasing cGMP production. Furthermore, treatment of the TAL with a PKG inhibitor blocked the effect of l-Arg and 8-BrcGMP on Cl− channels, respectively. In contrast, a phosphodiesterase 2 inhibitor had no significant effect on l-Arg or 8-BrcGMP-induced inhibition of Cl− channels. Therefore, we conclude that NO decreases basolateral 10-pS Cl− channel activity through a cGMP-dependent PKG pathway, which may contribute to the natriuretic and diuretic effects of NO in vivo.


1995 ◽  
Vol 268 (5) ◽  
pp. F953-F959 ◽  
Author(s):  
X. R. He ◽  
S. G. Greenberg ◽  
J. P. Briggs ◽  
J. B. Schnermann

To examine the possible role of NO in macula densa control of renin secretion, we examined the effects of varying NO availability on renin release in the isolated perfused rabbit juxtaglomerular apparatus (JGA). Gradual increments of luminal Na/Cl concentration ratio (mM/mM) from 26/7 over 46/27, 66/47, to 86/67 caused a progressive decrease in renin secretion from (as log of nano-Goldblatt hog units vs. time, i.e., log nGU/min) 1.09 +/- 0.34 to 0.46 +/- 0.24 log nGU/min, with the greatest change occurring at the first concentration step. The presence of 0.7 mM N omega-nitro-L-arginine (NNA), an NO synthase inhibitor, in the luminal fluid significantly reduced renin secretion at the lowest Na/Cl concentration ratio to 0.65 +/- 0.32 log nGU/min (P < 0.01 compared with control). Renin secretion at the higher Na/Cl concentration ratios was not significantly affected by NNA compared with control. In contrast to these results, the addition of the NO donor nitroprusside (1 mM) to the bath caused a reduction in renin secretion from 1.0 +/- 0.39 to 0.47 +/- 0.46 log nGU/min (P < 0.05), an effect that was reversed by bath addition of 0.01 mM methylene blue. Similarly, addition of L-arginine (0.7 mM) to the bath reduced renin secretion from 0.99 +/- 0.37 to 0.81 +/- 0.38 log nGU/min (P < 0.01), whereas addition of L-arginine to the luminal fluid increased renin secretion from 0.85 +/- 0.43 to 1.94 +/- 0.46 log nGU/min (P < 0.05). The stimulatory effect of luminal L-arginine was reversed by the luminal addition of NNA.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 269 (3) ◽  
pp. H1122-H1131 ◽  
Author(s):  
J. P. Guo ◽  
M. M. Panday ◽  
P. M. Consigny ◽  
A. M. Lefer

We studied the effects of a novel organic nitric oxide (NO) donor, 4-hydroxymethyl-furazan-3-carboxylic acid-2-oxide (CAS-1609), in a rat carotid artery intimal injury model. The NO donor, CAS-1609, or its non-NO-donating control compound, 4-hydroxymethyl-furazan-3-carboxylic acid (C-93-4845), was infused intravenously at 30 micrograms/day. Seven days after injury, carotid artery rings contracted only 56 +/- 6 mg to NG-nitro-L-arginine methyl ester in C-93-4845-treated rats, compared with 120 +/- 17 mg in CAS-1609-treated rats (P < 0.02), indicating a preservation of endogenous NO release. Improved responses to the endothelium-dependent dilator, acetylcholine, also occurred in injured arteries treated with CAS-1609. Morphometric analysis of injured carotid arteries given the inactive compound showed marked intimal thickening with an intimal-to-medial ratio (I/M) of 0.76 +/- 0.02, compared with a significantly lower I/M of 0.32 +/- 0.04 (P < 0.01) in injured carotid arteries given CAS-1609. Additionally, CAS-1609 was found to have a concentration-dependent stimulatory effect on cultured rat aortic endothelial cell proliferation (P < 0.01) but and inhibitory effect on platelet-derived growth factor-BB (10 ng/ml)-stimulated rat aortic smooth muscle cell proliferation (P < 0.01). This is the first study to demonstrate that NO plays a dual role in vascular cell proliferation, stimulating endothelial cells but inhibiting smooth muscle cell proliferation. This dual effect of NO on cell proliferation is associated with an in vivo reduction in neointimal thickening and an acceleration of endothelial recovery determined by both anatomic and functional methods.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1981
Author(s):  
Abolghassem Emamverdian ◽  
Yulong Ding ◽  
James Barker ◽  
Farzad Mokhberdoran ◽  
Muthusamy Ramakrishnan ◽  
...  

Recently, nitric oxide (NO) has been reported to increase plant resistance to heavy metal stress. In this regard, an in vitro tissue culture experiment was conducted to evaluate the role of the NO donor sodium nitroprusside (SNP) in the alleviation of heavy metal toxicity in a bamboo species (Arundinaria pygmaea) under lead (Pb) and cadmium (Cd) toxicity. The treatment included 200 µmol of heavy metals (Pb and Cd) alone and in combination with 200 µM SNP: NO donor, 0.1% Hb, bovine hemoglobin (NO scavenger), and 50 µM L-NAME, N(G)-nitro-L-arginine methyl ester (NO synthase inhibitor) in four replications in comparison to controls. The results demonstrated that the addition of L-NAME and Hb as an NO synthase inhibitor and NO scavenger significantly increased oxidative stress and injured the cell membrane of the bamboo species. The addition of sodium nitroprusside (SNP) for NO synthesis increased antioxidant activity, protein content, photosynthetic properties, plant biomass, and plant growth under heavy metal (Pb and Cd) toxicity. It was concluded that NO can increase plant tolerance for metal toxicity with some key mechanisms, such as increasing antioxidant activities, limiting metal translocation from roots to shoots, and diminishing metal accumulation in the roots, shoots, and stems of bamboo species under heavy metal toxicity (Pb and Cd).


Sign in / Sign up

Export Citation Format

Share Document