Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity

2001 ◽  
Vol 281 (2) ◽  
pp. H629-H636 ◽  
Author(s):  
T. W. Secomb ◽  
R. Hsu ◽  
A. R. Pries

Interior surfaces of capillaries are lined with macromolecules forming an endothelial surface layer (ESL). A theoretical model is used to investigate effects of flow velocity on motion and axisymmetric deformation of red blood cells in a capillary with an ESL. Cell deformation is analyzed, including effects of membrane shear and bending elasticity. Plasma flow around the cell and through the ESL is computed using lubrication theory. The ESL is represented as a porous layer that exerts compressive forces on red blood cells that penetrate it. According to the model, hydrodynamic pressures generated by plasma flow around the cell squeeze moving red blood cells into narrow elongated shapes. If the ESL is 0.7 μm wide, with hydraulic resistivity of 2 × 108dyn · s · cm−4, and exerts a force of 20 dyn/cm2, predicted variation with flow velocity of the gap width between red blood cell and capillary wall agrees well with observations. Predicted gap at a velocity of 0.1 mm/s is ∼0.6 μm vs. ∼0.2 μm with no ESL. Predicted flow resistance increases markedly at low velocities. The model shows that exclusion of red blood cells from the ESL in flowing capillaries can result from hydrodynamic forces generated by plasma flow through the ESL.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Daria Tsvirkun ◽  
Alexei Grichine ◽  
Alain Duperray ◽  
Chaouqi Misbah ◽  
Lionel Bureau

1999 ◽  
Vol 277 (2) ◽  
pp. H508-H514 ◽  
Author(s):  
Charmaine B. S. Henry ◽  
Brian R. Duling

The endothelial cell glycocalyx influences blood flow and presents a selective barrier to movement of macromolecules from plasma to the endothelial surface. In the hamster cremaster microcirculation, FITC-labeled Dextran 70 and larger molecules are excluded from a region extending almost 0.5 μm from the endothelial surface into the lumen. Red blood cells under normal flow conditions are excluded from a region extending even farther into the lumen. Examination of cultured endothelial cells has shown that the glycocalyx contains hyaluronan, a glycosaminoglycan which is known to create matrices with molecular sieving properties. To test the hypothesis that hyaluronan might be involved in establishing the permeation properties of the apical surface glycocalyx in vivo, hamster microvessels in the cremaster muscle were visualized using video microscopy. After infusion of one of several FITC-dextrans (70, 145, 580, and 2,000 kDa) via a femoral cannula, microvessels were observed with bright-field and fluorescence microscopy to obtain estimates of the anatomic diameters and the widths of fluorescent dextran columns and of red blood cell columns (means ± SE). The widths of the red blood cell and dextran exclusion zones were calculated as one-half the difference between the bright-field anatomic diameter and the width of the red blood cell column or dextran column. After 1 h of treatment with active Streptomyces hyaluronidase, there was a significant increase in access of 70- and 145-kDa FITC-dextrans to the space bounded by the apical glycocalyx, but no increase in access of the red blood cells or in the anatomic diameter in capillaries, arterioles, and venules. Hyaluronidase had no effect on access of FITC-Dextrans 580 and 2,000. Infusion of a mixture of hyaluronan and chondroitin sulfate after enzyme treatment reconstituted the glycocalyx, although treatment with either molecule separately had no effect. These results suggest that cell surface hyaluronan plays a role in regulating or establishing permeation of the apical glycocalyx to macromolecules. This finding and our prior observations suggest that hyaluronan and other glycoconjugates are required for assembly of the matrix on the endothelial surface. We hypothesize that hyaluronidase creates a more open matrix, enabling smaller dextran molecules to penetrate deeper into the glycocalyx.


1977 ◽  
Author(s):  
H.J. Genz ◽  
H. Metzger ◽  
P.F. Tauber ◽  
H. Ludwig

Spontaneous thrombus formation in human mesenteric veins was studied with the SEM. Tissue specimens were prepared according to Ludwig et al., Acta anatomica, 96, 469-477(1976). Platelet shape change, thrombus formation and organization and the morphological interactions between the various corpuscular elements of blood are demonstrated. The following morphological criteria of these processes are observed :(1) Platelets adhere to distinctly altered endothelial surfaces and exhibit pores in the membrane and pseudopodia. (2) Platelet aggregation and thrombus formation occur next to each other along the endothelial surface. Thrombi contain red blood cells and also a larger number of lymphocytes, but only a few platelets are hold prisoners within the fibrin network. Once caught in the mesh, such platelets do not show shape change compared to those being in contact with the endothelium. (3) Red blood cells between the thrombus fibers undergo form changes. Lymphocytes remain unaltered, but vice versa destroy adjacent fibrin fibers leading to partial loss of thrombus stability. This destruction occurs to a much lesser degree when platelets are near to the lymphocytes. It seems conceivable that platelets exert an inhibitory effect towards lymphocyte-induced fibrin proteolysis. The data suggest that both platelets and lymphocytes possibly represent a cellular control system that is responsible for the physiological clearance of spontaneously formed thrombi.


2018 ◽  
Vol 9 (5) ◽  
pp. 2383 ◽  
Author(s):  
Inwon Park ◽  
Kibaek Choe ◽  
Howon Seo ◽  
Yoonha Hwang ◽  
Eunjoo Song ◽  
...  

1986 ◽  
Vol 14 (2) ◽  
pp. 175-186 ◽  
Author(s):  
Dick W. Slaaf ◽  
Theo J. M. Jeurens ◽  
Geert Jan Tangelder ◽  
Robert S. Reneman ◽  
Theo Arts

PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e14262 ◽  
Author(s):  
Marijn C. Meuwese ◽  
Lysette N. Broekhuizen ◽  
Mayella Kuikhoven ◽  
Sylvia Heeneman ◽  
Esther Lutgens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document