Electrical activity of the longitudinal muscle of dog small intestine studied in vivo using microelectrodes

1960 ◽  
Vol 198 (1) ◽  
pp. 113-118 ◽  
Author(s):  
E. E. Daniel ◽  
A. J. Honour ◽  
A. Bogoch

The electrical activity of longitudinal muscle cells of the small intestine of the dog have been recorded in vivo using microelectrodes. This activity is characterized by periodic slow depolarizations of from 3 to 15 mv starting from potentials of 35–50 mv. The frequency of these slow depolarizations is less in the ileum than in the jejunum and is diminished by reduction in body temperature. Asphyxia diminishes both frequency and amplitude of these slow depolarizations without affecting the resting potentials. Action potential spikes arise from the larger slow depolarizations. The records obtained in this study are compared with previously recorded monopolar extracellular records. It is concluded that the slow waves recorded using extracellular electrodes arise from slow depolarizations of intestinal muscle cells. It is proposed that these slow depolarizations are a coordinating mechanism for motility of the longitudinal muscle of the dog intestine. The mechanism of synchronization of the slow waves themselves remains to be elucidated.

1993 ◽  
Vol 265 (4) ◽  
pp. G619-G627
Author(s):  
W. C. De Vos

This study characterizes the migrating spike complex (MSC) in the small intestine of the awake fasting cat and compares the MSC with interdigestive activity in the small intestine of other species. Electrical activity in each of 12 cats with implanted electrodes showed MSCs, bands of spike potentials which attenuated slow-wave frequency and amplitude as the MSCs progressed distally. MSCs occurred at variable frequency with intervals ranging from < 1 min to > 5 h and averaged 51.2 +/- 2.8 (SE) min. MSCs migrated at 1-8 mm/s, accelerating distally; the duration decreased distally such that the length of the bowel in a burst (2-3 cm proximally) was conserved. The MSC was associated with an intense prolonged contraction of duration similar to that of the MSC. Sometimes the MSCs occurred in close association, and when an MSC period was < 5.7 min, the second MSC propagated at a slower rate than the first. Frequently, a brief series of slow wave-associated spikes preceded an MSC. MSCs were not associated with slow waves. The MSC differs in several respects from the migrating myoelectric complex of other laboratory animals and is more appropriately classified in a category that includes giant migrating spikes, prolonged propagated contractions, power contractions, and migrating action potential complexes.


1965 ◽  
Vol 208 (3) ◽  
pp. 531-536 ◽  
Author(s):  
Alex Bortoff ◽  
Noah Weg

The electrical and mechanical activities of the gastroduodenal junction were studied in isolated cat preparations, using the pressure-electrode technique. The spontaneous electrical activity of the pyloric antrum consists of periodic depolarizations, the configuration of which is somewhat more complex than that of comparable potentials recorded from the longitudinal muscle layer of the small intestine. Like their intestinal counterparts these antral slow waves may be associated with spike potentials which are thought to initiate contractions. The electrical activity at the gastroduodenal junction consists of a combination of antral and duodenal slow waves, sometimes accompanied by spike potentials. In the proximal duodenum, antral slow waves are represented by periodic depolarizations which may be associated with spike potentials followed by contractions. Because of the extension of the antral slow waves into the proximal duodenum, contractions initiated in the antrum may also extend into the proximal duodenum. It is concluded that the gastroduodenal junction is a transition zone, coordinating the electrical and corresponding mechanical activities of the antrum and proximal duodenum.


1980 ◽  
Vol 60 (2) ◽  
pp. 293-301 ◽  
Author(s):  
L. BUENO ◽  
J. FIORAMONTI ◽  
E. GEUX ◽  
Y. RAISSIGUIER

The electrical activity of the gastrointestinal tract and gallbladder was recorded in four sheep fed a Mg-deficient diet during 10 to 15 days. The mitigating effect of intravenous infusions of MgCl2 was tested at the end of the experimental period in animals presenting hypomagnesemia. Motility of the reticulo-rumen remained unchanged in Mg-deficient sheep except that there was no postprandial increased frequency of contractions. By contrast, the contractions of gallbladder, cecum and proximal colon were reduced in both amplitude and frequency. The amplitude but not the frequency of the antro-duodenal slow-waves was reduced. The amplitude of the regular spiking activity of the small intestine was reduced as well as the number of complexes produced per day. The activity of the spiral colon was correlated to the blood magnesium concentrations but Mg infusion was unable to restore immediately the motor profile of the rest of the gut to its intitial level. This was done within 2–3 days by changes in the diet in three of the four animals. It is concluded that the motility of the whole digestive tract, including the reticulo-rumen, is modified on a Mg-deficient diet and that hypomagnesemia, involved in the atony of the spiral colon, is only one of the factors responsible for the hypomotility.


1975 ◽  
Vol 229 (2) ◽  
pp. 484-488 ◽  
Author(s):  
AK Mukhopadhyay ◽  
LR Johnson ◽  
EM Copeland ◽  
NW Weisbrodt

The effect of intravenously administered secretin (0.5, 2.0, 6.0 U/kg-h) and intraduodenal acidification (13.2 meq/h HCl) on the electrical activity of the small bowel of three conscious dogs with gastric and duodenal cannulas was observed. Electrical activity was recorded in fasted as well as fed conditions through silver wire electrodes implanted along the entire length of the small bowel. Intravenous infusion of secretin in all dosages and in all dogs delayed the onset of the interdigestive myoelectric complex and reduced the total percentage of slow waves with superimposed spike potentials. Intraduodenal acidification also inhibited the interdigestive myoelectric complex, which developed incompletely with fewer action potentials on slow waves. Secretin did not produce any alteration in the fed pattern of activity, slow-wave frequency, or the caudal migration of the interdigestive myoelectric complex. The present study indicates that the nuerohumoral mechanisms responsible for initiation of the interdigestive myoelectric complex may be different from those responsible for its caudal migration.


1982 ◽  
Vol 242 (4) ◽  
pp. G360-G363 ◽  
Author(s):  
J. R. Mathias ◽  
J. Nogueira ◽  
J. L. Martin ◽  
G. M. Carlson ◽  
R. A. Giannella

Escherichia coli heat-stable enterotoxin is a low-molecular-weight substance that has been shown to induce the active secretion of fluid and electrolytes in the small intestine. In this study, we have characterized the effects of purified E. coli heat-stable toxin (ST, strain 18D, serotype 042:K86:H37) on the motility of rabbit small intestine by using myoelectric recording techniques. Substances, such as cholera toxin, that activate the adenylate cyclase-cAMP system induced predominantly migrating action-potential complex activity. E. coli ST, a toxin that activates the guanylate cyclase-cGMP system, was infused into isolated in vivo ileal loops of New Zealand White rabbits. Inactivated toxin was also studied by exposing the ST to 1 mM dithiothreitol for 90 min. Active E. coli ST induced only repetitive bursts of action potentials. When the toxin was inactivated with dithiothreitol, no alteration in myoelectric activity was observed. We speculate that repetitive bursts of action-potential activity may represent a virulent factor of the bacterium, altering motor activity to slow transit and allowing for bacterial proliferation and invasion.


1963 ◽  
Vol 204 (2) ◽  
pp. 352-358 ◽  
Author(s):  
Gordon L. Van Harn

The externally recorded slow waves from the cat small intestine originate in the longitudinal muscle layer. In vitro the slow waves are recorded from all layers of the intestine if the segment is not immersed in a saline bath. When the longitudinal layer is removed from one region, the magnitude of the slow-wave potential in the other intestinal layers decreases as the distance from the intact longitudinal muscle layer is increased. An active intestine, in vivo, responds to sympathetic nerve stimulation by a hyperpolarization, cessation of spikes, and inhibition of muscle contraction. During inactivity of the intestine, either vagus or sympathetic nerve stimulation results in a depolarization, initiation of spikes, and muscle contraction. The nature of the response is influenced by the frequency of nerve stimulation and by the level of activity of the intestinal muscle, which is altered by intraluminal pressure changes. The effect of drugs on the response of the intestine to vagal and sympathetic nerve stimulation is such as to indicate that both inhibitory and excitatory nerve fibers are present in each of the autonomic nerves. The duration of the latent period of the response is long and highly variable, and a response requires 50–100 nerve volleys.


1999 ◽  
Vol 277 (2) ◽  
pp. G341-G350 ◽  
Author(s):  
Xuan-Zheng Shi ◽  
Sushil K. Sarna

The aim of this study was to identify the subtypes of muscarinic receptors that mediate in vivo and in vitro canine ileal longitudinal muscle contractions and whether their role is modulated by inflammation. Previous studies have reported that circular muscle contractions are suppressed in ileal inflammation induced by mucosal exposure to ethanol and acetic acid. We found that inflammation had no significant effect on in vivo and in vitro spontaneous or muscarinic receptor-mediated contractions of the longitudinal muscle. The longitudinal muscle contractions were mediated primarily by the M3 receptor subtype. However, the IC50 of the M2 receptor antagonist methoctramine was only 10 times greater than that of the M3 receptor antagonist 4-DAMP in the longitudinal muscle, whereas it was 224 times greater in the circular muscle. M2receptor-coupled decrease of intracellular cAMP occurred in the longitudinal but not in the circular muscle from the normal ileum. Inflammation did not alter this coupling in the longitudinal muscle but established it in the circular muscle. In conclusion, M2 receptors may play a greater role in the mediation of longitudinal muscle contractions than circular muscle contractions. Inflammation does not alter the contractility or the relative role of muscarinic receptor subtypes in longitudinal muscle cells. However, it modulates the M2 receptor coupling to adenylate cyclase in the circular muscle.


1961 ◽  
Vol 201 (1) ◽  
pp. 203-208 ◽  
Author(s):  
Alex Bortoff

The various configurations of externally recorded slow waves from the small intestine of the cat are compared to those recorded intracellularly. It is shown that the slow waves represent periodic depolarizations of longitudinal muscle cells and that the flow of current associated with these depolarizations is similar to that in a core conductor. By recording monopolarly from a segment of intestine immersed in a volume conductor, slow waves are obtained having configurations ranging from those approximating the true time course and polarity of the intracellular slow wave to those approximating its second time derivative. This is shown to be a function of the pressure exerted by the electrode on the tissue. From a consideration of these results, plus those recently obtained by others, it is suggested that both "propagation" and synchronization of slow waves are manifestations of a modulation of slow wave discharge brought about either by electrotonic spread of current via low resistance intercellular pathways, or by voltage field effects.


2005 ◽  
Vol 83 (11) ◽  
pp. 1031-1043 ◽  
Author(s):  
Wim J.E.P Lammers ◽  
Luc Ver Donck ◽  
Jan A.J Schuurkes ◽  
Betty Stephen

In an anesthetized, open-abdomen, canine model, the propagation pattern of the slow wave and its direction, velocity, amplitude, and frequency were investigated in the small intestine of 8 dogs. Electrical recordings were made using a 240-electrode array from 5 different sites, spanning the length of the small intestine. The majority of slow waves propagated uniformly and aborally (84%). In several cases, however, other patterns were found including propagation in the oral direction (11%) and propagation block (2%). In addition, in 69 cases (3%), a slow wave was initiated at a local site beneath the electrode array. Such peripheral pacemakers were found throughout the entire intestine. The frequency, velocity, and amplitude of slow waves were highest in the duodenum and gradually declined along the intestine reaching lowest values in the distal ileum (from 17.4 ± 1.7 c/min to 12.2 ± 0.7 c/min; 10.5 ± 2.4 cm/s to 0.8 ± 0.2 cm/s, and 1.20 ± 0.35 mV to 0.31 ± 0.10 mV, respectively; all p < 0.001). Consequently, the wavelength of the slow wave was strongly reduced from 36.4 ± 0.8 cm to 3.7 ± 0.1 cm (p < 0.001). We conclude that the patterns of slow wave propagation are usually, though not always, uniform in the canine small intestine and that the gradient in the wavelength will influence the patterns of local contractions.Key words: slow waves, conduction velocity, peripheral pacemakers, wavelength.


Sign in / Sign up

Export Citation Format

Share Document