Supersensitivity to l-norepinephrine of the denervated sinoatrial node

1965 ◽  
Vol 208 (2) ◽  
pp. 255-259 ◽  
Author(s):  
David E. Donald ◽  
John T. Shepherd

Following attempted denervation of the heart by the technic of regional neural ablation, dogs with incomplete cardiac denervation were shown to have the same supersensitivity to l-norepinephrine as dogs in which the denervation of the heart was complete. Dogs with chronic bilateral stellate ganglionectomy or those pretreated with reserpine had cardiac acceleration in response to the administration of tyramine or to stimulation of the stellate cardiac nerves, but did not demonstrate supersensitivity to l-norepinephrine. No supersensitivity was seen in dogs with chronic bilateral cervical vagotomy. Excision of the right stellate and caudal cervical ganglia and the immediately adjacent right vagus nerve resulted in supersensitivity to l-norepinephrine. In these animals cardiac acceleration resulted from stimulation of the left stellate cardiac nerves or from the administration of tyramine. The supersensitivity was lost after excision of the sinoatrial node. It is concluded that one can uniquely denervate the sinus node and that dogs so treated will develop supersensitivity to l-norepinephrine despite the presence of functional sympathetic nerves to the rest of the heart.

1981 ◽  
Vol 240 (4) ◽  
pp. H590-H596
Author(s):  
F. A. Kralios ◽  
C. K. Millar

The functional distribution of the cardiac sympathetic nerves to the atria and their arrhythmiogenic effects were determined in 16 open-chest pentobarbital-anesthetized dogs. Shortening of refractory periods at four right and two left atrial sites during stimulation of the nerves was taken as a criterion of their distribution. Stimulation of right stellate ganglion, craniovagal, and right stellate cardiac nerves produced localized shortening on the right atrium, particularly at the sinus node area, and invariably induced sinus tachycardia. The recurrent cardiac nerve produced little shortening at all sites and less arrhythmiogenic effect. The left stellate ganglion and ventrolateral cardiac nerve affected only left atrial sites and induced atrioventricular junctional rhythm. The ventromedial cardiac nerve affected all sites and had no consistent arrhythmiogenic effect. The innominate nerve had no substantial effect. We concluded that the functional distribution of the cardiac sympathetic nerves is localized, and that rate, rhythm, and refractory period changes induced by stimulation of these nerves are characteristic of the area of distribution.


1912 ◽  
Vol 15 (1) ◽  
pp. 14-48 ◽  
Author(s):  
Canby Robinson ◽  
George Draper

The electrocardiographic records taken during vagus stimulation by pressure from children suffering with chronic heart disease have shown that the stimulation of the vagi in these cases is strikingly effectual. In some of the cases, a definite difference was demonstrated between the action of the right and left vagi. The control of the rate of the heart-beat seemed to predominate usually in the right vagus nerve, while the control of stimulus conduction from auricles to ventricles apparently predominated usually in the left vagus. This difference in the two nerves probably exists on account of the difference in their anatomical distribution, the right vagus going especially to that part of the heart which controls the rate of contraction, the sinus node above the right auricle, and the left vagus going especially to that part in which the conducting mechanism is found. Each nerve, however, has to a lesser degree the function which predominates in the other. The whole heart seems to respond, as a rule, more promptly to right than to left vagus pressure, and fairly constant differences have been seen in the effects which stimulation of each nerve has on the various waves of the electrocardiograms. The stimulation of each vagus may influence directly the contractions of the ventricles, causing great diminution in their force. Right vagus stimulation was followed at times by a complete dissociation of auricles and ventricles. The auricular rhythm was slowed sufficiently at this time to allow the ventricles, whose inherent rhythmicity is apparently unaffected by right vagus stimulation, to take up their own independent rhythm. The heightened ventricular rhythmicity in these cases allowed this to take place after only moderate slowing of the auricles. The independent ventricular rhythm was sometimes established in the region of the node of Tawara, for no disturbance of the ventricular portion of the electrocardiogram occurred. At another time, some other point in the ventricles inaugurated the stimuli of the independent ventricular contractions and an abnormal electrocardiogram resulted. The resemblance of our curves, showing dissociation, to those obtained during right vagus and left accelerator stimulation in dogs is definite. That analogy, the clinical picture, and the form of the electrocardiograms of these cases have led us to the belief that an important feature in the pathological physiology of these cases is hypertonus of the cardiac accelerator nerves. This factor, as a cause of symptoms and as a hindrance to the establishment of cardiac rest, may prove of great importance, against which a new form of cardiac therapeutics must be directed.


1911 ◽  
Vol 14 (3) ◽  
pp. 217-234 ◽  
Author(s):  
G. Canby Robinson ◽  
George Draper

In hearts showing auricular fibrillation mechanical stimulation of the right vagus nerve causes, as a rule, marked slowing or stoppage of ventricular rhythm, without producing any appreciable effect in the electrocardiographic record of the auricular fibrillation. The ventricular pauses are apparently due to the blocking of stimuli from the auricles. The force of ventricular systole is distinctly weakened for several beats after vagus stimulation, and ectopic ventricular systoles have been seen in several instances, apparently the result of the vagus action. There may, in some cases, be lowered excitability of the ventricles, while no constant change is seen in the size of the electrical complexes representing ventricular systole.


2000 ◽  
Vol 89 (1) ◽  
pp. 139-142 ◽  
Author(s):  
Robert L. Coon ◽  
Patrick J. Mueller ◽  
Philip S. Clifford

The canine cervical trachea has been used for numerous studies regarding the neural control of tracheal smooth muscle. The purpose of the present study was to determine whether there is lateral dominance by either the left or right vagal innervation of the canine cervical trachea. In anesthetized dogs, pressure in the cuff of the endotracheal tube was used as an index of smooth muscle tone in the trachea. After establishment of tracheal tone, as indicated by increased cuff pressure, either the right or left vagus nerve was sectioned followed by section of the contralateral vagus. Sectioning the right vagus first resulted in total loss of tone in the cervical trachea, whereas sectioning the left vagus first produced either a partial or no decrease in tracheal tone. After bilateral section of the vagi, cuff pressure was recorded during electrical stimulation of the rostral end of the right or left vagus. At the maximum current strength used, stimulation of the left vagus produced tracheal constriction that averaged 28.5% of the response to stimulation of the right vagus (9.0 ± 1.8 and 31.6 ± 2.5 mmHg, respectively). In conclusion, the musculature of cervical trachea in the dog appears to be predominantly controlled by vagal efferents in the right vagus nerve.


1999 ◽  
Vol 90 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Michael D. Sharpe ◽  
Daniel J. Cuillerier ◽  
John K. Lee ◽  
Magdi Basta ◽  
Andrew D. Krahn ◽  
...  

Background The effects of sevoflurane on the electrophysiologic properties of the human heart are unknown. This study evaluated the effects of sevoflurane on the electrophysiologic properties of the normal atrioventricular conduction system, and on the accessory pathways in patients with Wolff-Parkinson-White syndrome, to determine its suitability as an anesthetic agent for patients undergoing ablative procedures. Methods Fifteen patients with Wolff-Parkinson-White syndrome undergoing elective radiofrequency catheter ablation were studied. Anesthesia was induced with alfentanil (20-50 microg/kg) and midazolam (0.15 mg/kg), and vecuronium (20 mg) and maintained with alfentanil (0.5 to 2 microg x kg(-1) x min(-1)) and midazolam (1 or 2 mg every 10-15 min, as required). An electrophysiologic study measured the effective refractory period of the right atrium, atrioventricular node, and accessory pathway; the shortest conducted cycle length of the atrioventricular node and accessory pathway during atrial pacing; the effective refractory period of the right ventricle and accessory pathway; and the shortest retrograde conducted cycle length of the accessory pathway during ventricular pacing. Parameters of sinoatrial node function included sinus node recovery time, corrected sinus node recovery time, and sinoatrial conduction time. Intraatrial conduction time and the atrial-His interval were also measured. Characteristics of induced reciprocating tachycardia, including cycle length, atrial-His, His-ventricular, and ventriculoatrial intervals, also were measured. Sevoflurane was administered to achieve an end-tidal concentration of 2% (1 minimum alveolar concentration), and the study measurements were repeated. Results Sevoflurane had no effect on the electrophysiologic parameters of conduction in the normal atrioventricular conduction system or accessory pathway, or during reciprocating tachycardia. However, sevoflurane caused a statistically significant reduction in the sinoatrial conduction time and atrial-His interval but these changes were not clinically important. All accessory pathways were successfully identified and ablated. Conclusions Sevoflurane had no effect on the electrophysiologic nature of the normal atrioventricular or accessory pathway and no clinically important effect on sinoatrial node activity. It is therefore a suitable anesthetic agent for patients undergoing ablative procedures.


2020 ◽  
Vol 73 (2) ◽  
pp. 224-228
Author(s):  
Orysia O. Bandrivska ◽  
Vitalij M. Mykhailiuk ◽  
Iryna A. Mykhailiuk ◽  
Natalia V. Malko

The aim: Find out the nature of the changes sensitivity of the heart to the cholinergic influences the development of diabetes depending on gender. Materials and methods: In experiments on adult male and female rats, type 1 diabetes by momentary introduction of streptozotocin at a dose of 60 mg/ kg into the peritoneal cavity was modeled. Animals were examined after 15, 30, 60 and 90 days after introduction of streptozotocin. We studied the sensitivity of cholinoreceptors of sinus node by the intensity of bradycardia with intravenous injection of acetylcholine and electrical stimulation of the peripheral segment of the right vagus nerve. Results: It was established that the intensity of the negative chronotropic effect of heart of males by electric stimulation of the vagus nerve, which depends on the reserves of acetylcholine in the presynaptic section and sensitivity of postsynaptic cholinoreceptors, increased gradually and after 90 days prevailed the output value in 2.2 times. This occurred at the background of a slight (10 %) decrease in response to exogenous acetylcholine that reflected the decrease in sensitivity of cholinoreceptors. In females the maximum increase (in 4.4 times) of the intensity of the negative chronotropic effect of vagus nerve stimulation was observed after 30 days from the start of the experiment. After 90 days, this indicator prevailed the controlled one in 3.3 times, which occurred at the background of heart response decreasing to exogenous acetylcholine (in 1.7 times). Conclusions: Obtained results suggest a more significant change in state of cholinoceptor system of myocardium of females compared with males in the dynamics of development of streptozotocin-induced diabetes.


1916 ◽  
Vol 24 (5) ◽  
pp. 605-619 ◽  
Author(s):  
G. Canby Robinson

The experiments that have been reported indicate that stimulation of either the right vagus or the left vagus nerve is equally effectual in blocking impulses from the auricles to the ventricles when auricular fibrillation is present. Stimulation of the left vagus nerve is as effectual in blocking impulses from the normally beating auricles as from the auricles when in a state of fibrillation, and the type of auricular activity has apparently no influence on the effect which stimulation of the left vagus has on auriculoventricular conduction.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
A Scridon ◽  
VB Halatiu ◽  
AI Balan ◽  
DA Cozac ◽  
GV Moldovan ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI Background The autonomic control of the pacemaker current, If, and the molecular mechanisms underlying parasympathetic If modulation are well understood. Conversely, the effects of chronic If blockade on the parasympathetic nervous system and on the heart rate (HR) response to acute parasympathetic changes are still largely unknown. Such interactions could significantly influence the course of patients undergoing chronic therapy with the If blocker ivabradine. Purpose We aimed to assess the effects of long-term If blockade using ivabradine on cardiac autonomic modulation and on the cardiovascular response to acute in vivo and in vitro parasympathetic stimulation. Methods Radiotelemetry ECG transmitters were implanted in 6 Control and 10 ivabradine-treated male Wistar rats (IVA; 3 weeks, 10 mg/kg/day); sympathetic and parasympathetic heart rate variability parameters were assessed. At the end of the study, the right atrium was removed and right atrial HCN(1-4) RNA expression levels were analyzed. The HR and systolic blood pressure (SBP) responses to in vivo electrical stimulation of the right vagus nerve (2–20 Hz) and the spontaneous sinus node discharge rate (SNDR) response to in vitro cholinergic receptors stimulation using carbamylcholine (10-9–10-6 mol/L) were assessed in 6 additional Control and 10 IVA rats. Results At the end of the study, mean 24-h HR was significantly lower in the IVA compared with the Control rats (301.3 ± 7.5 bpm vs. 341.5 ± 8.3 bpm; p< 0.01). Ivabradine administration led to a significant increase in vagal tone and shifted the sympatho-vagal balance towards vagal dominance (awake, asleep, and over 24-h; all p< 0.05). In the Control rats, in vivo vagus nerve stimulation induced a progressive decrease in both the SBP (p = 0.0001) and the HR (p< 0.0001). Meanwhile, in the IVA rats, vagal stimulation had no effect on the HR (p = 0.16) and induced a significantly lower drop in SBP (p< 0.05). Ivabradine-treated rats also presented a significantly lower SNDR drop in response to carbamylcholine (p< 0.01) and significantly higher HCN4 expression (p = 0.02). Conclusion Long-term If blockade using ivabradine caused a significant increase in vagal tone and shifted the autonomic balance towards vagal dominance in rats. Given the highly proarrhythmic effects of vagal activation at the atrial level, these findings could provide an explanation for the increased risk of atrial fibrillation associated with ivabradine use in clinical trials. In addition, ivabradine reduced the HR response to direct muscarinic receptors stimulation, canceled the cardioinhibitory response and blunted the hemodynamic response to in vivo vagal stimulation, and led to significant sinus node HCN4 up-regulation. These data suggest that ivabradine-induced HCN4 and the consequent If up-regulation could render the sinus node less sensitive to acute vagal inputs and could thus protect against excessive bradycardia induced by acute vagal activation.


2000 ◽  
Vol 278 (2) ◽  
pp. H404-H411 ◽  
Author(s):  
Deborah H. Damon

Sympathetic nerves are purported to stimulate blood vessel growth. The mechanism(s) underlying this stimulation has not been determined. With use of an in vitro coculture model, the present study tests the hypothesis that sympathetic neurons stimulate the growth of vascular smooth muscle (VSM) and evaluates potential mechanisms mediating this stimulation. Sympathetic neurons isolated from superior cervical ganglia (SCG) stimulated the growth of VSM. Growth of VSM in the presence of SCG (856 ± 81%) was significantly greater than that in the absence of SCG (626 ± 66%, P < 0.05). SCG did not stimulate VSM growth in transwell cocultures. An antibody that neutralized the activity of transforming growth factor-β2 (TGF-β2) inhibited SCG stimulation of VSM growth in coculture. SCG stimulation of VSM growth was also inhibited by an endothelin A receptor antagonist. These data suggest novel mechanisms for sympathetic modulation of vascular growth that may play a role in the physiological and/or pathological growth of the vasculature.


1990 ◽  
Vol 259 (5) ◽  
pp. H1504-H1510 ◽  
Author(s):  
K. M. Bluemel ◽  
R. D. Wurster ◽  
W. C. Randall ◽  
M. J. Duff ◽  
M. F. O'Toole

Vagal ganglia that innervate the canine sinoatrial node (SAN) have been localized to a fat pad overlying and surrounding the right pulmonary vein complex (PVFP). The ventral epicardial surface of the right atrium was mapped in seven dogs anesthetized with alpha-chloralose after beta-blockade (timolol) and cardiac sympathetic and parasympathetic decentralization. A small, concentric bipolar exploring electrode was used to stimulate (during the atrial refractory period and using trains of five to eight stimuli per beat) systematically in the epicardial regions between the PVFP and the SAN. Changes in SAN rate with stimulation were measured, and the anatomic location was identified on a 150-point grid fitted to conform to size and shape of the atrium. Mapping was performed before and after local (PVFP) and systemic ganglionic blockade (hexamethonium). Data reveal that the primary vagal postganglionic pathways to the sinoatrial nodal region are subepicardial and adjacent to the SAN artery along the sulcus terminalis. Hexamethonium in the PVFP abolishes SAN inhibition during preganglionic vagal excitation, without interrupting vagal suppression of atrioventricular conduction. However, SAN slowing (with varying attenuation) continued to occur after hexamethonium (either PVFP or systemically) when the exploring electrode was applied directly over intramural postganglionic fibers between PVFP and sinus node. Attention is directed to existence of a very few synapses closer to SAN, probably in isolated ganglia immersed in fatty connective tissues along the sulcus terminalis.


Sign in / Sign up

Export Citation Format

Share Document