Fibrin-induced release of platelet serotonin

1976 ◽  
Vol 231 (2) ◽  
pp. 344-350 ◽  
Author(s):  
KG Orloff ◽  
D Michaeli

Human platelets were reacted with polymerized fibrin formed from human fibrinogen. The platelets adhered to the fibrin particles and this adhesion was followed by the release of serotonin from prelabeled platelets. The adhesion of platelets to fibrin was not inhibited by adenosine or prostaglandin E1. However, the subsequent Ca2+-dependent release of platelet serotonin was completely inhibited by these compounds. After the initial platelet-fibrin interaction, ADP and serotonin released from activated platelets may lead to additional platelet aggregation and release. Therefore, in addition to clot stabilization, fibrin serves as an initiator of the platelet release reaction. This in turn initiates the self-amplifying process of platelet aggregation.

1976 ◽  
Vol 36 (02) ◽  
pp. 411-423 ◽  
Author(s):  
Nicholas Lekas ◽  
J. C Rosenberg

SummaryHuman platelets labeled with 51Cr were used to determine the contribution made by platelet lysis to the platelet release reaction and platelet aggregation induced by rabbit antihuman platelet serum (APS) and equine antihuman thymocyte globulin (ATG). Platelets were tested in both plasma (PRP) and non-plasma containing media. Antibodies directed against platelets, either as APS or ATG, induced significant amounts of platelet release and aggregation, as well as some degree of lysis, in the absence of complement. The presence of complement increased platelet lysis and aggregation, but not the release reaction. Non-immune horse gamma globulin produced different responses depending upon whether platelets were investigated in PRP or non-plasma containing media. Aggregation was seen in the latter but not the former. These differences can be explained by the presence of plasma components which prevent non-specific immune complexes from causing platelet aggregation. Since platelets in vivo are always in a plasma medium, one must be wary of utilizing data from platelet studies in synthetic plasma-free media as the basis of explaining clinical events. These observations demonstrate at least two, and possibly three, different mechanisms whereby ATG could activate platelets causing thrombotic complications and thrombocytopenia, i.e., via 1) specific and, 2) non-specific non-lytic pathways and 3) a lytic pathway.


1977 ◽  
Vol 233 (2) ◽  
pp. H305-H311
Author(s):  
K. G. Orloff ◽  
D. Michaeli

Homogenized fibrin induced platelet aggregation and the release of serotonin from human platelets. Fragment D, purified from a plasmin digest of human fibrinogen, inhibited these platelet-fibrin interactions. Using a radiolabeled fragment D, it was possible to demonstrate saturable binding of fragment D to fibrin. Nonlabeled fragment D competed with the radiolabeled fragment D for binding to fibrin. Furthermore, the binding of fragment D to fibrin paralleled its ability to inhibit the fibrin-induced release of platelet serotonin. It is postulated that the inhibitory effect of fragment D on fibrin activation of platelets is due to the binding of fragment D to fibrin. The bound fragment D may cover up or block sites on fibrin that are involved in fibrin-platelet interactions. This would then result in inhibition of the fibrin-induced platelet aggregation and release of platelet serotonin.


1970 ◽  
Vol 23 (01) ◽  
pp. 110-119 ◽  
Author(s):  
F Jobin ◽  
France Tremblay ◽  
M Morissette

SummaryWe have studied the effect of chymotrypsin substrates and inhibitors on the aggregation of human platelets by collagen, latex, and epinephrine :1. We have found that platelet aggregation was inhibited by most chymotrypsin substrates and inhibitors which we studied.2. In general, there was a positive correlation between the effectiveness of the compounds as chymotrypsin substrates or inhibitors on one hand, and as platelet aggregation inhibitors on the other hand. However aromatic amino acid derivatives acetylated on the α-amine group were much less effective with platelets than they are with chymotrypsin.3. Chymotrypsin substrates and inhibitors also inhibit the anaphylactic release of histamine. The view is presented that the platelet release reaction and the mast cell release reaction have several common biological and biochemical features.4. The possible role of platelet esterases in platelet thrombogenetic reactions is discussed in the light of the present knowledge of the role of cell bound esterase in several inflammatory or immune cellular processes.


1972 ◽  
Vol 28 (01) ◽  
pp. 002-013 ◽  
Author(s):  
Christina B Harbury ◽  
J. Edward Hershgold ◽  
Stanley L Schrier

SummaryWith the use of washed human platelets suspended in a buffered salt solution, we have studied the factors capable of acting directly at the platelet plasma membrane to produce aggregation as opposed to those which produce the platelet release reaction and secondary aggregation. Platelet aggregation was measured in an aggregometer and the release reaction followed by assays of the release products.Ca and fibrinogen will not independently induce aggregation in washed human platelets suspended in a buffered salt solution. However, in their absence ADP-, 5HT-and epinephrine-mediated aggregation will not proceed. Of particular interest was the finding that in the presence of Ca, threshold doses of thrombin will produce aggregation earlier if μg amounts of fibrinogen are added. Ca and fibrinogen therefore appear to be absolutely required for aggregation, whether the aggregation is produced by the addition or by the release of required components.If either ADP, 5HT or epinephrine is added singly to buffer-suspended platelets in the presence of Ca and fibrinogen, 10–20% aggregation is observed. The combination of either ADP-5HT, ADP-epinephrine or 5HT-epinephrine produces 60–70% aggregation. The addition of ADP, 5HT and epinephrine together produces 80–90% aggregation.No release reaction is produced by the addition of ADP or 5HT alone or in combination. A new finding in this study therefore is that 5HT and ADP can act directly at the platelet plasma membrane to produce extensive aggregation in the absence of any release reaction.Epinephrine does produce a small release reaction, and may therefore produce its enhancement of aggregation either by acting directly at the platelet plasma membrane or by the release of something other than Ca, fibrinogen, ADP, 5HT, or epinephrine.In this study using washed human platelets suspended in a buffered salt solution, no evidence was found for the requirement of a plasma protein other than fibrinogen in platelet aggregation.


1998 ◽  
Vol 79 (01) ◽  
pp. 177-185 ◽  
Author(s):  
Ashia Siddiqua ◽  
Michael Wilkinson ◽  
Vijay Kakkar ◽  
Yatin Patel ◽  
Salman Rahman ◽  
...  

SummaryWe report the characterization of a monoclonal antibody (MAb) PM6/13 which recognises glycoprotein IIIa (GPIIIa) on platelet membranes and in functional studies inhibits platelet aggregation induced by all agonists examined. In platelet-rich plasma, inhibition of aggregation induced by ADP or low concentrations of collagen was accompanied by inhibition of 5-hydroxytryptamine secretion. EC50 values were 10 and 9 [H9262]g/ml antibody against ADP and collagen induced responses respectively. In washed platelets treated with the cyclooxygenase inhibitor, indomethacin, PM6/13 inhibited platelet aggregation induced by thrombin (0.2 U/ml), collagen (10 [H9262]g/ml) and U46619 (3 [H9262]M) with EC50 = 4, 8 and 4 [H9262]g/ml respectively, without affecting [14C]5-hydroxytryptamine secretion or [3H]arachidonate release in appropriately labelled cells. Studies in Fura 2-labelled platelets revealed that elevation of intracellular calcium by ADP, thrombin or U46619 was unaffected by PM6/13 suggesting that the epitope recognised by the antibody did not influence Ca2+ regulation. In agreement with the results from the platelet aggregation studies, PM6/13 was found to potently inhibit binding of 125I-fibrinogen to ADP activated platelets. Binding of this ligand was also inhibited by two other MAbs tested, namely SZ-21 (also to GPIIIa) and PM6/248 (to the GPIIb-IIIa complex). However when tested against binding of 125I-fibronectin to thrombin stimulated platelets, PM6/13 was ineffective in contrast with SZ-21 and PM6/248, that were both potent inhibitors. This suggested that the epitopes recognised by PM6/13 and SZ-21 on GPIIIa were distinct. Studies employing proteolytic dissection of 125I-labelled GPIIIa by trypsin followed by immunoprecipitation with PM6/13 and analysis by SDS-PAGE, revealed the presence of four fragments at 70, 55, 30 and 28 kDa. PM6/13 did not recognize any protein bands on Western blots performed under reducing conditions. However Western blotting analysis with PM6/13 under non-reducing conditions revealed strong detection of the parent GP IIIa molecule, of trypsin treated samples revealed recognition of an 80 kDa fragment at 1 min, faint recognition of a 60 kDa fragment at 60 min and no recognition of any product at 18 h treatment. Under similar conditions, SZ-21 recognized fragments at 80, 75 and 55 kDa with the 55kDa species persisting even after 18 h trypsin treatment. These studies confirm the epitopes recognised by PM6/13 and SZ-21 to be distinct and that PM6/13 represents a useful tool to differentiate the characteristics of fibrinogen and fibronectin binding to the GPIIb-IIIa complex on activated platelets.


1994 ◽  
Vol 71 (01) ◽  
pp. 091-094 ◽  
Author(s):  
M Cattaneo ◽  
B Akkawat ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
C Cimminiello ◽  
...  

SummaryNormal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, prostaglandin E1 (PGE1) and chymotrypsin. Released adenosine diphosphate (ADP) plays an important role in the stabilization of thrombin-induced human platelet aggregates. Since ticlopidine inhibits the platelet responses to ADP, we studied thrombin-induced aggregation and deaggregation of 14C-serotonin-labeled platelets from 12 patients with cardiovascular disease before and 7 days after the oral administration of ticlopidine, 250 mg b.i.d. Before and after ticlopidine, platelets stimulated with 1 U/ml thrombin aggregated, released about 80–90% 14C-serotinin and did not deaggregate spontaneously within 5 min from stimulation. Before ticlopidine, hirudin (5× the activity of thrombin) and PGE1 (10 μmol/1) plus chymotrypsin (10 U/ml) or plasmin (0.06 U/ml), added at the peak of platelet aggregation, caused slight or no platelet deaggregation. After ticlopidine, the extent of platelet deaggregation caused by the same inhibitors was significantly greater than before ticlopidine. The addition of ADP (10 μmol/1) to platelet suspensions 5 s after thrombin did not prevent the deaggregation of ticlopidine-treated platelets. Thus, ticlopidine facilitates the deaggregation of thrombin-induced human platelet aggregates, most probably because it inhibits the effects of ADP on platelets.


1994 ◽  
Vol 72 (02) ◽  
pp. 244-249 ◽  
Author(s):  
Aura S Kamiguti ◽  
Joseph R Slupsky ◽  
Mirko Zuzel ◽  
Charles R M Hay

SummaryHaemorrhagic metalloproteinases from Bothrops jararaca and other venoms degrade vessel-wall and plasma proteins involved in platelet plug and fibrin clot formation. These enzymes also cause proteolytic digestion of fibrinogen which has been suggested to cause defective platelet function. Fibrinogen degradation by jararhagin, a metalloproteinase from B. jararaca, and the effect of jararhagin fibrinogenolysis on both platelet aggregation and fibrin clot formation were investigated. Jararhagin was found to cleave human fibrinogen in the C-terminal region of the Aα-chain giving rise to a 285-290 kDa fibrinogen molecule lacking the Aα-chain RGD 572-574 platelet-binding site. Platelet binding and aggregation of ADP-activated platelets is unaffected by this modification. This indicates that the lost site is not essential for platelet aggregation, and that the remaining platelet binding sites located in the N-terminal portion of Aα chains (RGD 95-97) and the C-terminal of γ chains (dodecapeptide 400-411) are unaffected by jararhagin-digestion of fibrinogen. Fibrin clot formation with thrombin of this remnant fibrinogen molecule was defective, with poor polymerization of fibrin monomers but normal release of FPA. The abnormal polymerization could be explained by the loss of one of the two complementary polymerization sites required for side-by-side association of fibrin protofibrils. Jararhagin-induced inhibition of platelet function, an important cause of haemorrhage in envenomed patients, is not caused by proteolysis of fibrinogen, as had been thought, and the mechanism remains to be elucidated.


1996 ◽  
Vol 75 (01) ◽  
pp. 168-174 ◽  
Author(s):  
Shigeru Tokita ◽  
Morio Arai ◽  
Naomasa Yamamoto ◽  
Yasuhiro Katagiri ◽  
Kenjiro Tanoue ◽  
...  

SummaryTo study the pathological functions of anti-phospholipid (anti-PL) antibodies, we have analyzed their effect on platelet function. We identified an IgG anti-PL mAb, designated PSG3, which cross-reacted specifically with glycoprotein (GP) IIIa in human platelets and inhibited platelet aggregation. PSG3 bound also to certain polyanionic substances, such as double-stranded DNA, heparan sulfate, dextran sulfate and acetylated-LDL, but not to other polyanionic substances. The binding of PSG3 to GPIIIa was completely inhibited by heparan sulfate and dextran sulfate, indicating that PSG3 recognizes a particular array of negative charges expressed on both GPIIIa and the specified polyanionic substances. Since neither neuraminidase- nor endoglycopeptidase F-treatment of GPIIIa had any significant effect on the binding of PSG3, this array must be located within the amino acid sequence of GPIIIa but not in the carbohydrate moiety. Reduction of the disulfide bonds in GPIIIa greatly reduced its reactivity, suggesting that the negative charges in the epitope are arranged in a particular conformation. PSG3 inhibited platelet aggregation induced by either ADP or collagen, it also inhibited fibrinogen binding to activated platelets in a dose-dependent fashion. PSG3, however, did not inhibit the binding of GRGDSP peptide to activated platelets. These results suggest that the PSG3 epitope on GPIIIa contains a particular array of negative charges, and possibly affects the fibrinogen binding to GPIIb/IIIa complex necessary for platelet aggregation.


1981 ◽  
Vol 45 (03) ◽  
pp. 257-262 ◽  
Author(s):  
P D Winocour ◽  
R L Kinlough-Rathbone ◽  
J F Mustard

SummaryWe have examined whether inhibition by mepacrine of freeing of arachidonic acid from platelet phospholipids inhibits platelet aggregation to collagen, thrombin or ADP, and the release reaction induced by thrombin or collagen. Loss of arachidonic acid was monitored by measuring the amount of 14 C freed from platelets prelabelled with 14 C-arachidonic acid. Mepacrine inhibited 14 C loss by more than 80% but did not inhibit thrombin-induced platelet aggregation and had a small effect on release. ADP-induced platelet aggregation did not cause 14 C loss. Mepacrine inhibited ADP-induced platelet aggregation by inhibiting the association of fibrinogen with platelets during aggregation. The effect of mepacrine on fibrinogen binding could be considerably decreased by washing the platelets but the inhibition of 14 C loss persisted. Platelets pretreated with mepacrine and then washed show restoration of aggregation to collagen. Thus, mepacrine has two effects; 1. it inhibits phospholipases, 2. it inhibits fibrinogen binding. Freeing of arachidonic acid is not necessary for platelet aggregation or the release reaction.


1984 ◽  
Vol 51 (01) ◽  
pp. 037-041 ◽  
Author(s):  
K M Weerasinghe ◽  
M F Scully ◽  
V V Kakkar

SummaryCollagen mediated platelet aggregation caused -5.6 ± 6.7% inhibition and +39.1 ± 15.2% potentiation of prekallikrein activation in plasma from normal healthy volunteers between 20–40 and 50–65 years of age, respectively (n = 15, p <0.01). The amouns of platelet factor-four (PF4) released in the two groups were not significantly different. Collagen treatment in the presence of indomethacin caused +11.5 ± 3.6% and +59.6 ± 19.5% potentiation in the 20–40 and 50–65 age groups respectively (p <0.02). Adrenaline mediated platelet aggregation caused -55.2 ± 7.1% and -35.2 ± 8.3% inhibition in the 20–40 and 50–65 age groups, respectively. Collagen treatment of platelet-deficient-plasma and platelet-rich-plasma in EDTA also caused potentiation of prekallikrein activation.The results indicate that the observed degree of prekallikrein activation after platelet aggregation is a net result of the inhibitory effect of PF4 and the potentiatory effect of activated platelets. The potentiatory effect was greater after collagen treatment as compared to adrenaline treatment, and in the 50–65 age group as compared to the 20–40 age group.


Sign in / Sign up

Export Citation Format

Share Document