Specific Cross-reaction of IgG Anti-phospholipid Antibody with Platelet Glycoprotein IIIa

1996 ◽  
Vol 75 (01) ◽  
pp. 168-174 ◽  
Author(s):  
Shigeru Tokita ◽  
Morio Arai ◽  
Naomasa Yamamoto ◽  
Yasuhiro Katagiri ◽  
Kenjiro Tanoue ◽  
...  

SummaryTo study the pathological functions of anti-phospholipid (anti-PL) antibodies, we have analyzed their effect on platelet function. We identified an IgG anti-PL mAb, designated PSG3, which cross-reacted specifically with glycoprotein (GP) IIIa in human platelets and inhibited platelet aggregation. PSG3 bound also to certain polyanionic substances, such as double-stranded DNA, heparan sulfate, dextran sulfate and acetylated-LDL, but not to other polyanionic substances. The binding of PSG3 to GPIIIa was completely inhibited by heparan sulfate and dextran sulfate, indicating that PSG3 recognizes a particular array of negative charges expressed on both GPIIIa and the specified polyanionic substances. Since neither neuraminidase- nor endoglycopeptidase F-treatment of GPIIIa had any significant effect on the binding of PSG3, this array must be located within the amino acid sequence of GPIIIa but not in the carbohydrate moiety. Reduction of the disulfide bonds in GPIIIa greatly reduced its reactivity, suggesting that the negative charges in the epitope are arranged in a particular conformation. PSG3 inhibited platelet aggregation induced by either ADP or collagen, it also inhibited fibrinogen binding to activated platelets in a dose-dependent fashion. PSG3, however, did not inhibit the binding of GRGDSP peptide to activated platelets. These results suggest that the PSG3 epitope on GPIIIa contains a particular array of negative charges, and possibly affects the fibrinogen binding to GPIIb/IIIa complex necessary for platelet aggregation.

2001 ◽  
Vol 85 (04) ◽  
pp. 702-709 ◽  
Author(s):  
P. Savi ◽  
G. Zamboni ◽  
O. Rescanières ◽  
J. M. Herbert

SummarySR121566 is a new synthetic agent which inhibits the binding of fibrinogen to activated platelets, and platelet aggregation. 3H-SR121566 bound with nanomolar affinity (KD ranging from 45 to 72 nM) to Gp IIb-IIIa expressing cells only. On activated human platelets, this ligand allowed the detection of a maximal number of 100-140,000 binding sites. The binding of SR121566 to platelets, was displaced by several agents including RGD-containing peptides and synthetic RGD mimetics, but not by ReoPro®, a humanised monoclonal antibody which inhibits the binding of fibrinogen to the Gp IIb-IIIa complex. Neither the fibrinogen dodecapeptide nor fibrinogen itself were able to compete with SR121566 whether platelets were activated or not.Flow cytometry studies indicated that SR121566 which did not activate Gp IIb-IIIa by itself, dose-dependently prevented the detection of activation-induced binding sites on TRAP-stimulated platelets in the presence or absence of exogenous fibrinogen, indicating a direct effect on the activation state of the Gp IIb-IIIa complex. Moreover, SR121566 was able to reverse the activation of Gp IIb-IIIa and to displace the binding of fibrinogen when added up to 5 min after TRAP stimulation of platelets. When added at later times (15 to 30 min), SR121566 failed to displace fibrinogen binding, even if SR121566 binding sites were still accessible and the Gp IIb-IIIa complex not activated.In conclusion, our study is in accordance with the finding that fibrinogen is recognised by the activated Gp IIb-IIIa complex through the dodecapeptide sequence present on its gamma chain, and that this interaction is inhibited by SR121566 by preventing and reversing the activated conformation of Gp IIb-IIIa and not by direct competition with fibrinogen.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 404-414 ◽  
Author(s):  
B Pasche ◽  
H Ouimet ◽  
S Francis ◽  
J Loscalzo

Plasmin exposure modulates platelet aggregation responses, but a direct effect of plasmin on the platelet fibrinogen receptor, glycoprotein IIb/IIIa (GPIIb/IIIa), has never been conclusively shown in a plasma milieu. To examine this issue, we incubated platelets in platelet-rich plasma with plasmin and measured the effect of this treatment on platelet aggregation, fibrinogen binding, and the structural integrity of GPIIb/IIIa. Plasmin treatment reduced maximal reversible fibrinogen binding in a dose-dependent fashion, and this reduction in binding was accompanied by a correlative reduction in the maximal rate of aggregation. Immunoblots performed with polyclonal antibodies against GPIIb/IIIa showed that GPIIIa had been cleaved by plasmin, but this cleavage was detected only after subsequent degradation of the solubilized GPIIb/IIIa with Staphylococcus aureus V8 (Glu-C) endoprotease. Peptide sequence analysis showed that cleavage occurred at the lys444-pro445 bond in the first cysteine-rich repeat domain of GPIIIa a unique proteolytic event observed only in the presence of plasma fibrinogen. These observations suggest that plasmin modifies GPIIIa by a unique proteolytic event in plasma that is dependent on fibrinogen binding and, consequently, is accompanied by significant reductions in fibrinogen binding and aggregation response.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 404-414 ◽  
Author(s):  
B Pasche ◽  
H Ouimet ◽  
S Francis ◽  
J Loscalzo

Abstract Plasmin exposure modulates platelet aggregation responses, but a direct effect of plasmin on the platelet fibrinogen receptor, glycoprotein IIb/IIIa (GPIIb/IIIa), has never been conclusively shown in a plasma milieu. To examine this issue, we incubated platelets in platelet-rich plasma with plasmin and measured the effect of this treatment on platelet aggregation, fibrinogen binding, and the structural integrity of GPIIb/IIIa. Plasmin treatment reduced maximal reversible fibrinogen binding in a dose-dependent fashion, and this reduction in binding was accompanied by a correlative reduction in the maximal rate of aggregation. Immunoblots performed with polyclonal antibodies against GPIIb/IIIa showed that GPIIIa had been cleaved by plasmin, but this cleavage was detected only after subsequent degradation of the solubilized GPIIb/IIIa with Staphylococcus aureus V8 (Glu-C) endoprotease. Peptide sequence analysis showed that cleavage occurred at the lys444-pro445 bond in the first cysteine-rich repeat domain of GPIIIa a unique proteolytic event observed only in the presence of plasma fibrinogen. These observations suggest that plasmin modifies GPIIIa by a unique proteolytic event in plasma that is dependent on fibrinogen binding and, consequently, is accompanied by significant reductions in fibrinogen binding and aggregation response.


Blood ◽  
1989 ◽  
Vol 73 (6) ◽  
pp. 1552-1560
Author(s):  
N Yamamoto ◽  
H Kitagawa ◽  
K Yamamoto ◽  
K Tanoue ◽  
H Yamazaki

Using a newly developed murine monoclonal antibody (MoAb), TM83, against glycoprotein IIIa (GPIIIa) of human platelets, we have analyzed the relationship between platelet fibrinogen binding and conformational changes in GPIIIa under EDTA treatment. Crossed radioimmunoelectrophoresis demonstrated that TM83 reacted with only the GPIIb/IIIa complex but also with GPIIIa alone. TM83 dose-dependently inhibited both thrombin-induced aggregation and fibrinogen binding to activated platelets. 125I-TM83 bound to an average of 20,890 +/- 1,600 (mean +/- SE, n = 12) sites on a resting platelet, with Kd = 2.06 nmol/L in the presence of Ca2+. When platelets were incubated in 2 nmol/L EDTA-containing medium, pH 7.4, at 22 degrees C for 30 minutes, binding of TM83 decreased to 70% of the control level. The decreased binding was fully recovered to the control level when the platelets were resuspended in Ca2+-containing medium. These platelets retained their aggregability. In contrast, when platelets were incubated in 2 mmol/L EDTA-containing medium, pH 7.4, at 37 degrees C for 30 minutes, TM83 binding to the platelets markedly decreased to 7% of the control, which could only be recovered to 40% of the control by replacing the medium with calcium-containing medium; these platelets lacked thrombin- induced aggregability. These findings suggest that the epitope for TM83 may be located near the fibrinogen binding site on GPIIIa and that its conformation is dependent on Ca2+ ions.


Blood ◽  
1989 ◽  
Vol 73 (6) ◽  
pp. 1552-1560 ◽  
Author(s):  
N Yamamoto ◽  
H Kitagawa ◽  
K Yamamoto ◽  
K Tanoue ◽  
H Yamazaki

Abstract Using a newly developed murine monoclonal antibody (MoAb), TM83, against glycoprotein IIIa (GPIIIa) of human platelets, we have analyzed the relationship between platelet fibrinogen binding and conformational changes in GPIIIa under EDTA treatment. Crossed radioimmunoelectrophoresis demonstrated that TM83 reacted with only the GPIIb/IIIa complex but also with GPIIIa alone. TM83 dose-dependently inhibited both thrombin-induced aggregation and fibrinogen binding to activated platelets. 125I-TM83 bound to an average of 20,890 +/- 1,600 (mean +/- SE, n = 12) sites on a resting platelet, with Kd = 2.06 nmol/L in the presence of Ca2+. When platelets were incubated in 2 nmol/L EDTA-containing medium, pH 7.4, at 22 degrees C for 30 minutes, binding of TM83 decreased to 70% of the control level. The decreased binding was fully recovered to the control level when the platelets were resuspended in Ca2+-containing medium. These platelets retained their aggregability. In contrast, when platelets were incubated in 2 mmol/L EDTA-containing medium, pH 7.4, at 37 degrees C for 30 minutes, TM83 binding to the platelets markedly decreased to 7% of the control, which could only be recovered to 40% of the control by replacing the medium with calcium-containing medium; these platelets lacked thrombin- induced aggregability. These findings suggest that the epitope for TM83 may be located near the fibrinogen binding site on GPIIIa and that its conformation is dependent on Ca2+ ions.


1998 ◽  
Vol 79 (01) ◽  
pp. 177-185 ◽  
Author(s):  
Ashia Siddiqua ◽  
Michael Wilkinson ◽  
Vijay Kakkar ◽  
Yatin Patel ◽  
Salman Rahman ◽  
...  

SummaryWe report the characterization of a monoclonal antibody (MAb) PM6/13 which recognises glycoprotein IIIa (GPIIIa) on platelet membranes and in functional studies inhibits platelet aggregation induced by all agonists examined. In platelet-rich plasma, inhibition of aggregation induced by ADP or low concentrations of collagen was accompanied by inhibition of 5-hydroxytryptamine secretion. EC50 values were 10 and 9 [H9262]g/ml antibody against ADP and collagen induced responses respectively. In washed platelets treated with the cyclooxygenase inhibitor, indomethacin, PM6/13 inhibited platelet aggregation induced by thrombin (0.2 U/ml), collagen (10 [H9262]g/ml) and U46619 (3 [H9262]M) with EC50 = 4, 8 and 4 [H9262]g/ml respectively, without affecting [14C]5-hydroxytryptamine secretion or [3H]arachidonate release in appropriately labelled cells. Studies in Fura 2-labelled platelets revealed that elevation of intracellular calcium by ADP, thrombin or U46619 was unaffected by PM6/13 suggesting that the epitope recognised by the antibody did not influence Ca2+ regulation. In agreement with the results from the platelet aggregation studies, PM6/13 was found to potently inhibit binding of 125I-fibrinogen to ADP activated platelets. Binding of this ligand was also inhibited by two other MAbs tested, namely SZ-21 (also to GPIIIa) and PM6/248 (to the GPIIb-IIIa complex). However when tested against binding of 125I-fibronectin to thrombin stimulated platelets, PM6/13 was ineffective in contrast with SZ-21 and PM6/248, that were both potent inhibitors. This suggested that the epitopes recognised by PM6/13 and SZ-21 on GPIIIa were distinct. Studies employing proteolytic dissection of 125I-labelled GPIIIa by trypsin followed by immunoprecipitation with PM6/13 and analysis by SDS-PAGE, revealed the presence of four fragments at 70, 55, 30 and 28 kDa. PM6/13 did not recognize any protein bands on Western blots performed under reducing conditions. However Western blotting analysis with PM6/13 under non-reducing conditions revealed strong detection of the parent GP IIIa molecule, of trypsin treated samples revealed recognition of an 80 kDa fragment at 1 min, faint recognition of a 60 kDa fragment at 60 min and no recognition of any product at 18 h treatment. Under similar conditions, SZ-21 recognized fragments at 80, 75 and 55 kDa with the 55kDa species persisting even after 18 h trypsin treatment. These studies confirm the epitopes recognised by PM6/13 and SZ-21 to be distinct and that PM6/13 represents a useful tool to differentiate the characteristics of fibrinogen and fibronectin binding to the GPIIb-IIIa complex on activated platelets.


1991 ◽  
Vol 65 (04) ◽  
pp. 432-437 ◽  
Author(s):  
A W J Stuttle ◽  
M J Powling ◽  
J M Ritter ◽  
R M Hardisty

SummaryThe anti-platelet monoclonal antibody P256 is currently undergoing development for in vivo detection of thrombus. We have examined the actions of P256 and two fragments on human platelet function. P256, and its divalent fragment, caused aggregation at concentrations of 10−9−3 × 10−8 M. A monovalent fragment of P256 did not cause aggregation at concentrations up to 10−7 M. P256–induced platelet aggregation was dependent upon extracellular calcium ions as assessed by quin2 fluorescence. Indomethacin partially inhibited platelet aggregation and completely inhibited intracellular calcium mobilisation. Apyrase caused partial inhibition of aggregation. Aggregation induced by the divalent fragment was dependent upon fibrinogen and was inhibited by prostacyclin. Aggregation induced by the whole antibody was only partially dependent upon fibrinogen, but was also inhibited by prostacyclin. P256 whole antibody was shown, by flow cytometry, to induce fibrinogen binding to indomethacin treated platelets. Monovalent P256 was shown to be a specific antagonist for aggregation induced by the divalent forms. In–111–labelled monovalent fragment bound to gel-filtered platelets in a saturable and displaceable manner. Monovalent P256 represents a safer form for in vivo applications


1994 ◽  
Vol 72 (06) ◽  
pp. 964-972 ◽  
Author(s):  
Jeffery L Kutok ◽  
Barry S Coller

SummaryWe produced a murine monoclonal antibody, 7H2, and localized its epitope to one or more small regions on platelet glycoprotein (GP) Ilia. 7H2-IgG and 7H2-F(ab’)2 completely inhibit platelet aggregation and fibrinogen binding at low agonist concentrations, but only partially inhibit aggregation and fibrinogen binding at high agonist concentrations; 7H2-Fab has no effect on aggregation or fibrinogen binding at any agonist concentration. 7H2-IgG binds to the entire platelet population as judged by flow cytometry. At near saturating concentrations, ∼40,000 7H2-IgG antibody molecules bind per platelet. In contrast, ∼80,000 7H2 Fab molecules bind per platelet, suggesting that 7H2-IgG binding is bivalent. 7H2 was unable to inhibit fibrinogen binding to purified, immobilized GPIIb/IIIa. These data indicate that the bivalent binding of 7H2 to GPIIIa is required for its partial inhibition of fibrinogen binding to platelets, perhaps through dimerization of GPIIb/IIIa surface receptors (or more complex GPIIb/IIIa redistribution triggered by 7H2 binding) resulting in limited accessibility of fibrinogen to its binding site(s).


1991 ◽  
Vol 274 (2) ◽  
pp. 457-463 ◽  
Author(s):  
J J Calvete ◽  
J Arias ◽  
M V Alvarez ◽  
M M Lopez ◽  
A Henschen ◽  
...  

The precise localization of the epitopes for six monoclonal antibodies specific for the N-terminal region of human platelet glycoprotein IIIa (GPIIIa) was determined. The epitope for P37, a monoclonal antibody that inhibits platelet aggregation, was found at GPIIIa 101-109, flanked by the epitopes for P23-3 (GPIIIa 16-28), P23-4 (GPIIIa 83-91), P23-5 (GPIIIa 67-73), P23-7 (GPIIIa 114-122) and P40 (GPIIIa 262-302), and very close to the early chymotryptic cleavage site of GPIIIa in whole platelets (Phe-100). When the amino acid sequence of GPIIIa was searched for peptide sequences hydropathically complementary to the fibrinogen gamma-chain C-terminal (gamma 400-411) and A alpha-chain RGD-containing peptides, none was found for the gamma 400-411, two (GPIIIa 128-132 and 380-384) were found complementary to fibrinogen A alpha 571-575 and two (GPIIIa 109-113 and 129-133) were found for A alpha 94-99. Two of these putative fibrinogen-binding sites overlap with each other, and a third one overlaps with the epitope for P37. These findings reinforce the earlier suggestion that the N-terminal region of GPIIIa is involved in fibrinogen binding, and suggest the existence in GPIIIa of either multiple or alternative RGD-binding sites or one RGD-binding domain with several moieties. Finally, early chymotryptic cleavage of GPIIIa in whole platelets liberates to the soluble fraction the peptide stretch Ser-101-Tyr-348, which carries the epitope for P37 and the putative binding sites for fibrinogen. The rest of the molecule, together with the GPIIb-resistant moiety, remains membrane-bound. This leads us to propose that the fibrinogen-binding domain of GPIIIa is not involved in the binding to GPIIb to form the Ca2(+)-dependent GPIIb-GPIIIa complex.


2004 ◽  
Vol 91 (04) ◽  
pp. 779-789 ◽  
Author(s):  
Oonagh Shannon ◽  
Jan-Ingmar Flock

Summary S. aureus produces and secretes a protein, extracellular fibrinogen binding protein (Efb), which contributes to virulence in wound infection. We have shown here that Efb is a potent inhibitor of platelet aggregation. Efb can bind specifically to platelets by two mechanisms; 1) to fibrinogen naturally bound to the surface of activated platelets and 2) also directly to a surface localized component on the platelets. This latter binding of Efb is independent of fibrinogen. The specific binding of Efb to the putative receptor on the platelet surface results in a stimulated, non-functional binding of fibrinogen in a dose dependent manner, distinct from natural binding of fibrinogen to platelets. The natural binding of fibrinogen to GPIIb/IIIa on activated platelets could be blocked by a monoclonal antibody against this integrin, whereas the Efb-mediated fibrinogen binding could not be blocked. The enhanced Efb-dependent fibrinogen binding to platelets is of a nature that does not promote aggregation of the platelets; instead it inhibits aggregation. The anti-thrombotic action of Efb may explain the effect of Efb on wound healing, which is delayed in the presence of Efb.


Sign in / Sign up

Export Citation Format

Share Document