Hog barn dust slows airway epithelial cell migration in vitro through a PKCα-dependent mechanism

2007 ◽  
Vol 293 (6) ◽  
pp. L1469-L1474 ◽  
Author(s):  
Rebecca E. Slager ◽  
Diane S. Allen-Gipson ◽  
Alexi Sammut ◽  
Art Heires ◽  
Jane DeVasure ◽  
...  

Agricultural work and other occupational exposures are responsible for ∼15% of chronic obstructive pulmonary disease (COPD). COPD involves airway remodeling in response to chronic lung inflammatory events and altered airway repair mechanisms. However, the effect of agricultural dust exposure on signaling pathways that regulate airway injury and repair has not been well characterized. A key step in this process is migration of airway cells to restore epithelial integrity. We have previously shown that agents that activate the critical regulatory enzyme protein kinase C (PKC) slow cell migration during wound repair. Based on this observation and direct kinase measurements that demonstrate that dust extract from hog confinement barns (HDE) specifically activates the PKC isoforms PKCα and PKCε, we hypothesized that HDE would slow wound closure time in airway epithelial cells. We utilized the human bronchial epithelial cell line BEAS-2B and transfected BEAS-2B cell lines that express dominant negative (DN) forms of PKC isoforms to demonstrate that HDE slows wound closure in BEAS-2B and PKCε DN cell lines. However, in PKCα DN cells, wound closure following HDE treatment is not significantly different than media-treated cells. These results suggest that the PKCα isoform is an important regulator of cell migration in response to agricultural dust exposure.

2006 ◽  
Vol 291 (4) ◽  
pp. L794-L801 ◽  
Author(s):  
Delbert R. Dorscheid ◽  
Benjamin J. Patchell ◽  
Oscar Estrada ◽  
Bertha Marroquin ◽  
Roberta Tse ◽  
...  

Damage to the airway epithelium is common in asthma. Corticosteroids induce apoptosis in and suppress proliferation of airway epithelial cells in culture. Whether apoptosis contributes to impaired epithelial cell repair after injury is not known. We examined whether corticosteroids would impair epithelial cell migration in an in vitro model of wound closure. Wounds (∼0.5–1.3 mm2) were created in cultured 1HAEo−human airway epithelial cell monolayers, after which cells were treated with up to 10 μM dexamethasone or budesonide for 24 h. Cultured cells were pretreated for 24 or 48 h with dexamethasone to observe the effect of long-term exposure on wound closure. After 12 h, the remaining wound area in monolayers pretreated for 48 h with 10 μM dexamethasone was 43 ± 18% vs. 10 ± 8% for untreated control monolayers. The addition of either corticosteroid immediately after injury did not slow closure significantly. After 12 h the remaining wound area in monolayers treated with 10 μM budesonide was 39 ± 4% vs. 43 ± 3% for untreated control monolayers. The proportion of apoptotic epithelial cells as measured by terminal deoxynucleotidyltransferase-mediated dUTP biotin nick end labeling both at and away from the wound edge was higher in monolayers treated with budesonide compared with controls. However, wound closure in the apoptosis-resistant 1HAEo−.Bcl-2+cell line was not different after dexamethasone treatment. We demonstrate that corticosteroid treatment before mechanical wounding impairs airway epithelial cell migration. The addition of corticosteroids after injury does not slow migration, despite their ability to induce apoptosis in these cells.


1998 ◽  
Vol 72 (11) ◽  
pp. 8904-8912 ◽  
Author(s):  
S. Teramoto ◽  
J. S. Bartlett ◽  
D. McCarty ◽  
X. Xiao ◽  
R. J. Samulski ◽  
...  

ABSTRACT Adeno-associated virus (AAV) vectors appear promising for use in gene therapy in cystic fibrosis (CF) patients, yet many features of AAV-mediated gene transfer to airway epithelial cells are not well understood. We compared the transduction efficiencies of AAV vectors and adenovirus (Ad) vectors in immortalized cell lines from CF patients and in nasal epithelial primary cultures from normal humans and CF patients. Similar dose-dependent relationships between the vector multiplicities of infection and the efficiencies of lacZgene transfer were observed. However, levels of transduction for both Ad and recombinant AAV (rAAV) were significantly lower in the airway epithelial cell than in the control cell lines HeLa and HEK 293. Transduction efficiencies differed among cultured epithelial cell types, with poorly differentiated cells transducing more efficiently than well-differentiated cells. A time-dependent increase in gene expression was observed after infection for both vectors. For Ad, but not for AAV, this increase was dependent on prolonged incubation of cells with the vector. Furthermore, for rAAV (but not for rAd), the delay in maximal transduction could be abrogated by wild-type Ad helper infection. Thus, although helper virus is not required for maximal transduction, it increases the kinetics by which this is achieved. Expression of Ad E4 open reading frame 6 or addition of either hydroxyurea or camptothecin resulted in increased AAV transduction, as previously demonstrated for nonairway cells (albeit to lower final levels), suggesting that second-strand synthesis may not be the sole cause of inefficient transduction. Finally, the efficiency of AAV-mediated ex vivo gene transfer to lung cells was similar to that previously described for Ad vectors in that transduction was limited to regions of epithelial injury and preferentially targeted basal-like cells. These studies address the primary factors influencing rAAV infection of human airway cells and should impact successful gene delivery in CF patients.


2012 ◽  
Vol 417 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Lili Zhang ◽  
Marianne Gallup ◽  
Lorna Zlock ◽  
Walter Finkbeiner ◽  
Nancy A. McNamara

Sign in / Sign up

Export Citation Format

Share Document