Effects of corticosteroid-induced apoptosis on airway epithelial wound closure in vitro

2006 ◽  
Vol 291 (4) ◽  
pp. L794-L801 ◽  
Author(s):  
Delbert R. Dorscheid ◽  
Benjamin J. Patchell ◽  
Oscar Estrada ◽  
Bertha Marroquin ◽  
Roberta Tse ◽  
...  

Damage to the airway epithelium is common in asthma. Corticosteroids induce apoptosis in and suppress proliferation of airway epithelial cells in culture. Whether apoptosis contributes to impaired epithelial cell repair after injury is not known. We examined whether corticosteroids would impair epithelial cell migration in an in vitro model of wound closure. Wounds (∼0.5–1.3 mm2) were created in cultured 1HAEo−human airway epithelial cell monolayers, after which cells were treated with up to 10 μM dexamethasone or budesonide for 24 h. Cultured cells were pretreated for 24 or 48 h with dexamethasone to observe the effect of long-term exposure on wound closure. After 12 h, the remaining wound area in monolayers pretreated for 48 h with 10 μM dexamethasone was 43 ± 18% vs. 10 ± 8% for untreated control monolayers. The addition of either corticosteroid immediately after injury did not slow closure significantly. After 12 h the remaining wound area in monolayers treated with 10 μM budesonide was 39 ± 4% vs. 43 ± 3% for untreated control monolayers. The proportion of apoptotic epithelial cells as measured by terminal deoxynucleotidyltransferase-mediated dUTP biotin nick end labeling both at and away from the wound edge was higher in monolayers treated with budesonide compared with controls. However, wound closure in the apoptosis-resistant 1HAEo−.Bcl-2+cell line was not different after dexamethasone treatment. We demonstrate that corticosteroid treatment before mechanical wounding impairs airway epithelial cell migration. The addition of corticosteroids after injury does not slow migration, despite their ability to induce apoptosis in these cells.

2012 ◽  
Vol 417 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Lili Zhang ◽  
Marianne Gallup ◽  
Lorna Zlock ◽  
Walter Finkbeiner ◽  
Nancy A. McNamara

2002 ◽  
Vol 283 (6) ◽  
pp. L1315-L1321 ◽  
Author(s):  
Yingjian You ◽  
Edward J. Richer ◽  
Tao Huang ◽  
Steven L. Brody

Highly regulated programs for airway epithelial cell proliferation and differentiation during development and repair are often disrupted in disease. These processes have been studied in mouse models; however, it is difficult to isolate and identify epithelial cell-specific responses in vivo. To investigate these processes in vitro, we characterized a model for primary culture of mouse tracheal epithelial cells. Small numbers of cells seeded at low density (7.5 × 104 cells/cm2) rapidly proliferated and became polarized. Subsequently, supplemented media and air-liquid interface conditions resulted in development of highly differentiated epithelia composed of ciliated and nonciliated cells with gene expression characteristic of native airways. Genetically altered or injured mouse tracheal epithelial cells also reflected in vivo patterns of airway epithelial cell gene expression. Passage of cells resulted in continued proliferation but limited differentiation after the first passage, suggesting that transit-amplifying cell populations were present but with independent programs for proliferation and differentiation. This approach provides a high-fidelity in vitro model for evaluation of gene regulation and expression in mouse airway epithelial cells.


2006 ◽  
Vol 282 (5) ◽  
pp. 3213-3220 ◽  
Author(s):  
Umadevi V. Wesley ◽  
Peter F. Bove ◽  
Milena Hristova ◽  
Sean McCarthy ◽  
Albert van der Vliet

Oncotarget ◽  
2016 ◽  
Vol 7 (47) ◽  
pp. 76437-76452 ◽  
Author(s):  
Serisha Moodley ◽  
Mathieu Derouet ◽  
Xiao Hui Bai ◽  
Feng Xu ◽  
Andras Kapus ◽  
...  

2013 ◽  
Vol 48 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Stefan H. Gorissen ◽  
Milena Hristova ◽  
Aida Habibovic ◽  
Lynne M. Sipsey ◽  
Page C. Spiess ◽  
...  

2021 ◽  
Author(s):  
Ratna Varma ◽  
James Poon ◽  
Zhongfa Liao ◽  
Stewart Aitchison ◽  
Thomas K Waddell ◽  
...  

Topographical cues are known to influence cell organization both in native tissues and in vitro. In the trachea, the matrix beneath the epithelial lining is composed of collagen fibres that...


2020 ◽  
Vol 55 (6) ◽  
pp. 1901200 ◽  
Author(s):  
Nick J.I. Hamilton ◽  
Dani Do Hyang Lee ◽  
Kate H.C. Gowers ◽  
Colin R. Butler ◽  
Elizabeth F. Maughan ◽  
...  

Current methods to replace damaged upper airway epithelium with exogenous cells are limited. Existing strategies use grafts that lack mucociliary function, leading to infection and the retention of secretions and keratin debris. Strategies that regenerate airway epithelium with mucociliary function are clearly desirable and would enable new treatments for complex airway disease.Here, we investigated the influence of the extracellular matrix (ECM) on airway epithelial cell adherence, proliferation and mucociliary function in the context of bioengineered mucosal grafts. In vitro, primary human bronchial epithelial cells (HBECs) adhered most readily to collagen IV. Biological, biomimetic and synthetic scaffolds were compared in terms of their ECM protein content and airway epithelial cell adherence.Collagen IV and laminin were preserved on the surface of decellularised dermis and epithelial cell attachment to decellularised dermis was greater than to the biomimetic or synthetic alternatives tested. Blocking epithelial integrin α2 led to decreased adherence to collagen IV and to decellularised dermis scaffolds. At air–liquid interface (ALI), bronchial epithelial cells cultured on decellularised dermis scaffolds formed a differentiated respiratory epithelium with mucociliary function. Using in vivo chick chorioallantoic membrane (CAM), rabbit airway and immunocompromised mouse models, we showed short-term preservation of the cell layer following transplantation.Our results demonstrate the feasibility of generating HBEC grafts on clinically applicable decellularised dermis scaffolds and identify matrix proteins and integrins important for this process. The long-term survivability of pre-differentiated epithelia and the relative merits of this approach against transplanting basal cells should be assessed further in pre-clinical airway transplantation models.


Sign in / Sign up

Export Citation Format

Share Document