scholarly journals Disruption of the airway epithelial barrier in a murine model of respiratory syncytial virus infection

2019 ◽  
Vol 316 (2) ◽  
pp. L358-L368 ◽  
Author(s):  
Carrie C. Smallcombe ◽  
Debra T. Linfield ◽  
Terri J. Harford ◽  
Vladimir Bokun ◽  
Andrei I. Ivanov ◽  
...  

Respiratory syncytial virus (RSV) is a major cause of hospitalization for infants and young children worldwide. RSV is known to infect epithelial cells and increase the permeability of model airway epithelial monolayers in vitro. We hypothesized that RSV infection also induces airway barrier dysfunction in vivo. C57BL/6 mice were intranasally inoculated with RSV, and on day 4 post-inoculation were examined for viral replication, lung inflammation, and barrier integrity as well as the structure and molecular composition of epithelial junctions. In parallel, primary mouse tracheal epithelial cells (mTEC) were cultured for in vitro studies. RSV-infected mice lost weight and showed significant peribronchial inflammation compared with noninfected controls and UV-inactivated RSV-inoculated animals. RSV infection increased the permeability of the airway epithelial barrier and altered the molecular composition of epithelial tight junctions. The observed RSV-induced barrier disruption was accompanied by decreased expression of several tight-junction proteins and accumulation of cleaved extracellular fragments of E-cadherin in bronchoalveolar lavage and mTEC supernatants. Similarly, in vitro RSV infection of mTEC monolayers resulted in enhanced permeability and disruption of tight-junction structure. Furthermore, incubation of mTEC monolayers with a recombinant fragment of E-cadherin caused tight-junction disassembly. Taken together, these data indicate that RSV infection leads to airway barrier dysfunction in vivo, mediated by either decreased expression or cleavage of junctional proteins. Our observations provide further insights into the pathophysiology of RSV infection and provide a rationale for development of barrier-protecting agents to alleviate the pathogenic effects of RSV infection.

2020 ◽  
Vol 319 (3) ◽  
pp. L481-L496
Author(s):  
Carrie C. Smallcombe ◽  
Terri J. Harford ◽  
Debra T. Linfield ◽  
Susana Lechuga ◽  
Vladimir Bokun ◽  
...  

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide. While most develop a mild, self-limiting illness, some develop severe acute lower respiratory infection and persistent airway disease. Exposure to ambient particulate matter has been linked to asthma, bronchitis, and viral infection in multiple epidemiological studies. We hypothesized that coexposure to nanoparticles worsens RSV-induced airway epithelial barrier dysfunction. Bronchial epithelial cells were incubated with titanium dioxide nanoparticles (TiO2-NP) or a combination of TiO2-NP and RSV. Structure and function of epithelial cell barrier were analyzed. Viral titer and the role of reactive oxygen species (ROS) generation were evaluated. In vivo, mice were intranasally incubated with TiO2-NP, RSV, or a combination. Lungs and bronchoalveolar lavage (BAL) fluid were harvested for analysis of airway inflammation and apical junctional complex (AJC) disruption. RSV-induced AJC disruption was amplified by TiO2-NP. Nanoparticle exposure increased viral infection in epithelial cells. TiO2-NP induced generation of ROS, and pretreatment with antioxidant, N-acetylcysteine, reversed said barrier dysfunction. In vivo, RSV-induced injury and AJC disruption were augmented in the lungs of mice given TiO2-NP. Airway inflammation was exacerbated, as evidenced by increased white blood cell infiltration into the BAL, along with exaggeration of peribronchial inflammation and AJC disruption. These data demonstrate that TiO2-NP exposure exacerbates RSV-induced AJC dysfunction and increases inflammation by mechanisms involving generation of ROS. Further studies are required to determine whether NP exposure plays a role in the health disparities of asthma and other lung diseases, and why some children experience more severe airway disease with RSV infection.


2021 ◽  
Author(s):  
Li-Nan Wang ◽  
Xiang-Lei Peng ◽  
Min Xu ◽  
Yuan-Bo Zheng ◽  
Yue-Ying Jiao ◽  
...  

AbstractHuman respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5′ to 3′) a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 548
Author(s):  
Kiramage Chathuranga ◽  
Asela Weerawardhana ◽  
Niranjan Dodantenna ◽  
Lakmal Ranathunga ◽  
Won-Kyung Cho ◽  
...  

Sargassum fusiforme, a plant used as a medicine and food, is regarded as a marine vegetable and health supplement to improve life expectancy. Here, we demonstrate that S. fusiforme extract (SFE) has antiviral effects against respiratory syncytial virus (RSV) in vitro and in vivo mouse model. Treatment of HEp2 cells with a non-cytotoxic concentration of SFE significantly reduced RSV replication, RSV-induced cell death, RSV gene transcription, RSV protein synthesis, and syncytium formation. Moreover, oral inoculation of SFE significantly improved RSV clearance from the lungs of BALB/c mice. Interestingly, the phenolic compounds eicosane, docosane, and tetracosane were identified as active components of SFE. Treatment with a non-cytotoxic concentration of these three components elicited similar antiviral effects against RSV infection as SFE in vitro. Together, these results suggest that SFE and its potential components are a promising natural antiviral agent candidate against RSV infection.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2055
Author(s):  
Andrew R. Connelly ◽  
Brian M. Jeong ◽  
Mackenzie E. Coden ◽  
Jacob Y. Cao ◽  
Tatiana Chirkova ◽  
...  

Respiratory syncytial virus (RSV) is a seasonal mucosal pathogen that infects the ciliated respiratory epithelium and results in the most severe morbidity in the first six months of life. RSV is a common cause of acute respiratory infection during infancy and is an important early-life risk factor strongly associated with asthma development. While this association has been repeatedly demonstrated, limited progress has been made on the mechanistic understanding in humans of the contribution of infant RSV infection to airway epithelial dysfunction. An active infection of epithelial cells with RSV in vitro results in heightened central metabolism and overall hypermetabolic state; however, little is known about whether natural infection with RSV in vivo results in lasting metabolic reprogramming of the airway epithelium in infancy. To address this gap, we performed functional metabolomics, 13C glucose metabolic flux analysis, and RNA-seq gene expression analysis of nasal airway epithelial cells (NAECs) sampled from infants between 2–3 years of age, with RSV infection or not during the first year of life. We found that RSV infection in infancy was associated with lasting epithelial metabolic reprogramming, which was characterized by (1) significant increase in glucose uptake and differential utilization of glucose by epithelium; (2) altered preferences for metabolism of several carbon and energy sources; and (3) significant sexual dimorphism in metabolic parameters, with RSV-induced metabolic changes most pronounced in male epithelium. In summary, our study supports the proposed phenomenon of metabolic reprogramming of epithelial cells associated with RSV infection in infancy and opens exciting new venues for pursuing mechanisms of RSV-induced epithelial barrier dysfunction in early life.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Marie Galloux ◽  
Nadège Gsponer ◽  
Vanessa Gaillard ◽  
Brice Fenner ◽  
Thibaut Larcher ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) is the main cause of severe respiratory infection in young children worldwide, and no therapies have been approved for the treatment of RSV infection. Data from recent clinical trials of fusion or L polymerase inhibitors for the treatment of RSV-infected patients revealed the emergence of escape mutants, highlighting the need for the discovery of inhibitors with novel mechanisms of action. Here we describe stapled peptides derived from the N terminus of the phosphoprotein (P) that act as replication inhibitors. We demonstrate that these peptides inhibit RSV replication in vitro and in vivo by preventing the formation of the N0-P complex. The present strategy provides a novel means of targeting RSV replication with constrained macrocyclic peptides or small molecules and is broadly applicable to other viruses of the Mononegavirales order.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cuiping Ye ◽  
Chaowen Huang ◽  
Mengchen Zou ◽  
Yahui Hu ◽  
Lishan Luo ◽  
...  

Abstract Background The dysfunction of airway epithelial barrier is closely related to the pathogenesis of asthma. Secreted Hsp90α participates in inflammation and Hsp90 inhibitor protects endothelial dysfunction. In the current study, we aimed to explore the role of secreted Hsp90α in asthmatic airway epithelial barrier function. Methods Male BALB/c mice were sensitized and challenged with HDM to generate asthma model. The 16HBE and Hsp90α-knockdown cells were cultured and treated according to the experiment requirements. Transepithelial Electric Resistance (TEER) and permeability of epithelial layer in vitro, distribution and expression of junction proteins both in vivo and in vitro were used to evaluate the epithelial barrier function. Western Blot was used to evaluate the expression of junction proteins and phosphorylated AKT in cells and lung tissues while ELISA were used to evaluate the Hsp90α expression and cytokines release in the lung homogenate. Results HDM resulted in a dysfunction of airway epithelial barrier both in vivo and in vitro, paralleled with the increased expression and release of Hsp90α. All of which were rescued in Hsp90α-knockdown cells or co-administration of 1G6-D7. Furthermore, either 1G6-D7 or PI3K inhibitor LY294002 suppressed the significant phosphorylation of AKT, which caused by secreted and recombinant Hsp90α, resulting in the restoration of epithelial barrier function. Conclusions Secreted Hsp90α medicates HDM-induced asthmatic airway epithelial barrier dysfunction via PI3K/AKT pathway, indicating that anti-secreted Hsp90α therapy might be a potential treatment to asthma in future.


2020 ◽  
Vol 94 (13) ◽  
Author(s):  
Yu Deng ◽  
Jenny A. Herbert ◽  
Elisabeth Robinson ◽  
Luo Ren ◽  
Rosalind L. Smyth ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) is a major cause of pediatric respiratory disease. Large numbers of neutrophils are recruited into the airways of children with severe RSV disease. It is not clear whether or how neutrophils enhance recovery from disease or contribute to its pathology. Using an in vitro model of the differentiated airway epithelium, we found that the addition of physiological concentrations of neutrophils to RSV-infected nasal cultures was associated with greater epithelial damage with lower ciliary activity, cilium loss, less tight junction expression (ZO-1), and more detachment of epithelial cells than is seen with RSV infection alone. This was also associated with a decrease in infectious virus and fewer RSV-positive cells in cultures after neutrophil exposure than in preexposure cultures. Epithelial damage in response to RSV infection was associated with neutrophil activation (within 1 h) and neutrophil degranulation, with significantly greater cellular expression of CD11b and myeloperoxidase and higher levels of neutrophil elastase and myeloperoxidase activity in apical surface media than in media with mock-infected airway epithelial cells (AECs). We also recovered more apoptotic neutrophils from RSV-infected cultures (>40%) than from mock-infected cultures (<5%) after 4 h. The results of this study could provide important insights into the role of neutrophils in host response in the airway. IMPORTANCE This study shows that the RSV-infected human airway drives changes in the behavior of human neutrophils, including increasing activation markers and delaying apoptosis, that result in greater airway damage and viral clearance.


Sign in / Sign up

Export Citation Format

Share Document