In vivo activation of CFTR-dependent chloride transport in murine airway epithelium by CNP

1997 ◽  
Vol 273 (5) ◽  
pp. L1065-L1072 ◽  
Author(s):  
Thomas J. Kelley ◽  
Calvin U. Cotton ◽  
Mitchell L. Drumm

Inhibitors of guanosine 3′,5′-cyclic monophosphate (cGMP)-inhibited phosphodiesterases stimulate Cl− transport across the nasal epithelia of cystic fibrosis mice carrying the ΔF508 mutation [cystic fibrosis transmembrane conductance regulator (CFTR) (ΔF/ΔF)], suggesting a role for cGMP in regulation of epithelial ion transport. Here we show that activation of membrane-bound guanylate cyclases by C-type natriuretic peptide (CNP) stimulates hyperpolarization of nasal epithelium in both wild-type and ΔF508 CFTR mice in vivo but not in nasal epithelium of mice lacking CFTR [CFTR(−/−)]. With the use of a nasal transepithelial potential difference (TEPD) assay, CNP was found to hyperpolarize lumen negative TEPD by 6.1 ± 0.6 mV in mice carrying wild-type CFTR. This value is consistent with that obtained with 8-bromoguanosine 3′,5′-cyclic monophosphate (6.2 ± 0.9 mV). A combination of the adenylate cyclase agonist forskolin and CNP demonstrated a synergistic ability to induce Cl− secretion across the nasal epithelium of CFTR(ΔF/ΔF) mice. No effect on TEPD was seen with this combination when used on CFTR(−/−) mice, implying that the CNP-induced change in TEPD in CFTR(ΔF/ΔF) mice is CFTR dependent.

2001 ◽  
Vol 281 (5) ◽  
pp. L1173-L1179 ◽  
Author(s):  
Kristine G. Brady ◽  
Thomas J. Kelley ◽  
Mitchell L. Drumm

Epithelia of humans and mice with cystic fibrosis are unable to secrete chloride in response to a chloride gradient or to cAMP-elevating agents. Bioelectrical properties measured using the nasal transepithelial potential difference (TEPD) assay are believed to reflect these cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride transport defects. Although the response to forskolin is CFTR mediated, the mechanisms responsible for the response to a chloride gradient are unknown. TEPD measurements performed on inbred mice were used to compare the responses to low chloride and forskolin in vivo. Both responses show little correlation between or within inbred strains of mice, suggesting they are mediated through partially distinct mechanisms. In addition, these responses were assayed in the presence of several chloride channel inhibitors, including DIDS, diphenylamine-2-carboxylate, glibenclamide, and 5-nitro-2-(3-phenylpropylamino)-benzoic acid, and a protein kinase A inhibitor, the Rp diastereomer of adenosine 3′,5′-cyclic monophosphothioate ( Rp-cAMPS). The responses to low chloride and forskolin demonstrate significantly different pharmacological profiles to both DIDS and Rp-cAMPS, indicating that channels in addition to CFTR contribute to the low chloride response.


2009 ◽  
Vol 421 (3) ◽  
pp. 377-385 ◽  
Author(s):  
Andrew Young ◽  
Martina Gentzsch ◽  
Cynthia Y. Abban ◽  
Ying Jia ◽  
Patricio I. Meneses ◽  
...  

Dynasore, a small molecule inhibitor of dynamin, was used to probe the role of dynamin in the endocytosis of wild-type and mutant CFTR (cystic fibrosis transmembrane conductance regulator). Internalization of both wild-type and ‘temperature-corrected’ ΔF508 CFTR was markedly inhibited by a short exposure to dynasore, implicating dynamin as a key element in the endocytic internalization of both wild-type and mutant CFTR. The inhibitory effect of dynasore was readily reversible upon washout of dynasore from the growth media. Corr-4 ({2-(5-chloro-2-methoxy-phenylamino)-4′-methyl-[4,5′]-bithiazolyl-2′-yl}-phenyl-methanonone), a pharmacological corrector of ΔF508 CFTR biosynthesis, caused a marked increase in the cell surface expression of mutant CFTR. Co-incubation of ΔF508 CFTR expressing cells with Corr-4 and dynasore caused a significantly greater level of cell surface CFTR than that observed in the presence of Corr-4 alone. These results argue that inhibiting the endocytic internalization of mutant CFTR provides a novel therapeutic target for augmenting the benefits of small molecule correctors of mutant CFTR biosynthesis.


1999 ◽  
Vol 277 (4) ◽  
pp. C833-C839 ◽  
Author(s):  
Beate Illek ◽  
Lei Zhang ◽  
Nancy C. Lewis ◽  
Richard B. Moss ◽  
Jian-Yun Dong ◽  
...  

The patch-clamp technique was used to investigate the effects of the isoflavone genistein on disease-causing mutations (G551D and ΔF508) of the cystic fibrosis transmembrane conductance regulator (CFTR). In HeLa cells recombinantly expressing the trafficking-competent G551D-CFTR, the forskolin-stimulated Cl currents were small, and average open probability of G551D-CFTR was P o = 0.047 ± 0.019. Addition of genistein activated Cl currents ∼10-fold, and the P o of G551D-CFTR increased to 0.49 ± 0.12, which is a P o similar to wild-type CFTR. In cystic fibrosis (CF) epithelial cells homozygous for the trafficking-impaired ΔF508 mutation, forskolin and genistein activated Cl currents only after 4-phenylbutyrate treatment. These data suggested that genistein activated CFTR mutants that were present in the cell membrane. Therefore, we tested the effects of genistein in CF patients with the G551D mutation in nasal potential difference (PD) measurements in vivo. The perfusion of the nasal mucosa of G551D CF patients with isoproterenol had no effect; however, genistein stimulated Cl-dependent nasal PD by, on average, −2.4 ± 0.6 mV, which corresponds to 16.9% of the responses (to β-adrenergic stimulation) found in healthy subjects.


2004 ◽  
Vol 15 (6) ◽  
pp. 2684-2696 ◽  
Author(s):  
Martina Gentzsch ◽  
Xiu-Bao Chang ◽  
Liying Cui ◽  
Yufeng Wu ◽  
Victor V. Ozols ◽  
...  

Intracellular trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) is a focus of attention because it is defective in most patients with cystic fibrosis. ΔF508 CFTR, which does not mature conformationally, normally does not exit the endoplasmic reticulum, but if induced to do so at reduced temperature is short-lived at the surface. We used external epitope-tagged constructs to elucidate the itinerary and kinetics of wild type and ΔF508 CFTR in the endocytic pathway and visualized movement of CFTR from the surface to intracellular compartments. Modulation of different endocytic steps with low temperature (16°C) block, protease inhibitors, and overexpression of wild type and mutant Rab GTPases revealed that surface CFTR enters several different routes, including a Rab5-dependent initial step to early endosomes, then either Rab11-dependent recycling back to the surface or Rab7-regulated movement to late endosomes or alternatively Rab9-mediated transit to the trans-Golgi network. Without any of these modulations ΔF508 CFTR rapidly disappears from and does not return to the cell surface, confirming that its altered structure is detected in the distal as well as proximal secretory pathway. Importantly, however, the mutant protein can be rescued at the plasma membrane by Rab11 overexpression, proteasome inhibitors, or inhibition of Rab5-dependent endocytosis.


1998 ◽  
Vol 275 (4) ◽  
pp. C958-C966 ◽  
Author(s):  
Zhaoping He ◽  
Sasikala Raman ◽  
Yi Guo ◽  
William W. Reenstra

Recent studies have demonstrated that several compounds with diverse structures can activate wild-type cystic fibrosis transmembrane conductance regulator (CFTR) by non-receptor-mediated mechanisms. Some of these compounds have been shown to enhance cAMP-dependent activation of ΔF508-CFTR. This study was undertaken to compare the mechanisms by which genistein, IBMX, milrinone, 8-cyclopentyl-1,3-dipropylxanthine (CPX), the benzimidazolone NS004, and calyculin A increase CFTR activity. Our studies demonstrate that, in transfected NIH-3T3 cells, maximal enhancements of forskolin-dependent ΔF508-CFTR activity are greatest with genistein, IBMX, and NS004. Milrinone, genistein, CPX, NS004, and calyculin A do not increase cellular cAMP. Because forskolin and calyculin A increase in vivo phosphorylation of cAMP binding response element (CREB), the inability of milrinone, genistein, CPX, and NS004 to increase CREB phosphorylation suggests that they do not stimulate protein kinase A or inhibit phosphatase activity. Our data suggest that the mechanisms by which genistein and NS004 activate CFTR differ. We also demonstrate that, in NIH-3T3 cells, IBMX-dependent enhancement of cAMP-dependent CFTR activity is not due to an increase in cellular cAMP and may involve a mechanism like that of genistein.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 422
Author(s):  
Michela Pecoraro ◽  
Silvia Franceschelli ◽  
Maria Pascale

Cystic fibrosis is a monogenic, autosomal, recessive disease characterized by an alteration of chloride transport caused by mutations in the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene. The loss of Phe residue in position 508 (ΔF508-CFTR) causes an incorrect folding of the protein causing its degradation and electrolyte imbalance. CF patients are extremely predisposed to the development of a chronic inflammatory process of the bronchopulmonary system. When the cells of a tissue are damaged, the immune cells are activated and trigger the production of free radicals, provoking an inflammatory process. In addition to routine therapies, today drugs called correctors are available for mutations such as ΔF508-CFTR as well as for others less frequent ones. These active molecules are supposed to facilitate the maturation of the mutant CFTR protein, allowing it to reach the apical membrane of the epithelial cell. Matrine induces ΔF508-CFTR release from the endoplasmic reticulum to cell cytosol and its localization on the cell membrane. We now have evidence that Matrine and Lumacaftor not only restore the transport of mutant CFTR protein, but probably also counteract the inflammatory process by improving the course of the disease.


1993 ◽  
Vol 264 (4) ◽  
pp. C794-C802 ◽  
Author(s):  
S. J. Huang ◽  
W. O. Fu ◽  
Y. W. Chung ◽  
T. S. Zhou ◽  
P. Y. Wong

Single rat epididymal cell studied under whole cell patch-clamp condition responded to 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (CPT-cAMP) (500 microM) and to ionomycin (1 microM) by an increase in whole cell conductance. A major part of the stimulated current was carried by Cl-, although a small part was due to nonselective cation current. After elimination of the cation current component by using impermeant cation, the cells revealed different Cl- conductance properties in response to adenosine 3',5'-cyclic monophosphate (cAMP) and ionomycin. The cAMP-stimulated Cl- conductance was independent of time and voltage and showed a linear current-voltage relationship. The anion permselectivity was NO3- > Br- > Cl- approximately I- >> SO(4)2-. The ionomycin-stimulated Cl- conductance showed marked time and voltage dependency. In contrast to the cAMP-induced anion permselectivity, the ionomycin-induced anion permselectivity was I- > Br- approximately NO3- > Cl- >> SO(4)2-. These results indicate that the epididymal epithelial cells exhibit different Cl- conductances sensitive to cAMP and Ca2+. The cAMP-activated conductance has properties resembling the type associated with the cystic fibrosis transmembrane conductance regulator found in cystic fibrosis-affected epithelia. This finding supports the notion that the epididymis is a cystic fibrosis epithelium.


Sign in / Sign up

Export Citation Format

Share Document