scholarly journals Lumacaftor and Matrine: Possible Therapeutic Combination to Counteract the Inflammatory Process in Cystic Fibrosis

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 422
Author(s):  
Michela Pecoraro ◽  
Silvia Franceschelli ◽  
Maria Pascale

Cystic fibrosis is a monogenic, autosomal, recessive disease characterized by an alteration of chloride transport caused by mutations in the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene. The loss of Phe residue in position 508 (ΔF508-CFTR) causes an incorrect folding of the protein causing its degradation and electrolyte imbalance. CF patients are extremely predisposed to the development of a chronic inflammatory process of the bronchopulmonary system. When the cells of a tissue are damaged, the immune cells are activated and trigger the production of free radicals, provoking an inflammatory process. In addition to routine therapies, today drugs called correctors are available for mutations such as ΔF508-CFTR as well as for others less frequent ones. These active molecules are supposed to facilitate the maturation of the mutant CFTR protein, allowing it to reach the apical membrane of the epithelial cell. Matrine induces ΔF508-CFTR release from the endoplasmic reticulum to cell cytosol and its localization on the cell membrane. We now have evidence that Matrine and Lumacaftor not only restore the transport of mutant CFTR protein, but probably also counteract the inflammatory process by improving the course of the disease.

Impact ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. 52-54
Author(s):  
Nicolas Lamontagne

Cystic fibrosis (CF) is a progressive life–shortening disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene leading to a dysfunctional CFTR protein. The disease affects over 70,000 patients worldwide and while many mutations are known, the F508del mutation affects 90% of all patients. The absence of CFTR in the plasma membrane leads to a dramatic decrease in chloride efflux, resulting in viscous mucus that causes severe symptoms in vital organs like the lungs and intestines. For CF patients that suffer from the life threatening F508del mutation only palliative treatment exist. PRO–CF–MED addresses the specific challenge of this call by introducing the first disease modifying medication for the treatment of the CF patients with F508del mutation. The PRO–CF–MED project has been designed to assess the potential clinical efficacy of QR–010, an innovative disease modifying oligonucleotide–based treatment for F508del patients. Partners within PRO–CF–MED have generated very promising preclinical evidence for QR–010 which allows for further clinical assessment of QR–010 in clinical trials. PRO–CF–MED will enable the fast translation of QR–010 towards clinical practice and market authorisation. PRO–CF–MED has the potential to transform this life–threatening condition into a manageable one.


Breathe ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 210112
Author(s):  
Daniel H. Tewkesbury ◽  
Rebecca C. Robey ◽  
Peter J. Barry

The genetic multisystem condition cystic fibrosis (CF) has seen a paradigm shift in therapeutic approaches within the past decade. Since the first clinical descriptions in the 1930s, treatment advances had focused on the downstream consequences of a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) chloride ion channel. The discovery of the gene that codes for CFTR and an understanding of the way in which different genetic mutations lead to disruption of normal CFTR function have led to the creation and subsequent licensing of drugs that target this process. This marks an important move towards precision medicine in CF and results from clinical trials and real-world clinical practice have been impressive. In this review we outline how CFTR modulator drugs restore function to the CFTR protein and the progress that is being made in this field. We also describe the real-world impact of CFTR modulators on both pulmonary and multisystem complications of CF and what this will mean for the future of CF care.


1997 ◽  
Vol 273 (5) ◽  
pp. L1065-L1072 ◽  
Author(s):  
Thomas J. Kelley ◽  
Calvin U. Cotton ◽  
Mitchell L. Drumm

Inhibitors of guanosine 3′,5′-cyclic monophosphate (cGMP)-inhibited phosphodiesterases stimulate Cl− transport across the nasal epithelia of cystic fibrosis mice carrying the ΔF508 mutation [cystic fibrosis transmembrane conductance regulator (CFTR) (ΔF/ΔF)], suggesting a role for cGMP in regulation of epithelial ion transport. Here we show that activation of membrane-bound guanylate cyclases by C-type natriuretic peptide (CNP) stimulates hyperpolarization of nasal epithelium in both wild-type and ΔF508 CFTR mice in vivo but not in nasal epithelium of mice lacking CFTR [CFTR(−/−)]. With the use of a nasal transepithelial potential difference (TEPD) assay, CNP was found to hyperpolarize lumen negative TEPD by 6.1 ± 0.6 mV in mice carrying wild-type CFTR. This value is consistent with that obtained with 8-bromoguanosine 3′,5′-cyclic monophosphate (6.2 ± 0.9 mV). A combination of the adenylate cyclase agonist forskolin and CNP demonstrated a synergistic ability to induce Cl− secretion across the nasal epithelium of CFTR(ΔF/ΔF) mice. No effect on TEPD was seen with this combination when used on CFTR(−/−) mice, implying that the CNP-induced change in TEPD in CFTR(ΔF/ΔF) mice is CFTR dependent.


2001 ◽  
Vol 281 (5) ◽  
pp. L1173-L1179 ◽  
Author(s):  
Kristine G. Brady ◽  
Thomas J. Kelley ◽  
Mitchell L. Drumm

Epithelia of humans and mice with cystic fibrosis are unable to secrete chloride in response to a chloride gradient or to cAMP-elevating agents. Bioelectrical properties measured using the nasal transepithelial potential difference (TEPD) assay are believed to reflect these cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride transport defects. Although the response to forskolin is CFTR mediated, the mechanisms responsible for the response to a chloride gradient are unknown. TEPD measurements performed on inbred mice were used to compare the responses to low chloride and forskolin in vivo. Both responses show little correlation between or within inbred strains of mice, suggesting they are mediated through partially distinct mechanisms. In addition, these responses were assayed in the presence of several chloride channel inhibitors, including DIDS, diphenylamine-2-carboxylate, glibenclamide, and 5-nitro-2-(3-phenylpropylamino)-benzoic acid, and a protein kinase A inhibitor, the Rp diastereomer of adenosine 3′,5′-cyclic monophosphothioate ( Rp-cAMPS). The responses to low chloride and forskolin demonstrate significantly different pharmacological profiles to both DIDS and Rp-cAMPS, indicating that channels in addition to CFTR contribute to the low chloride response.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1677 ◽  
Author(s):  
Shaiq Sultan ◽  
Andrea Rozzi ◽  
Jessica Gasparello ◽  
Alex Manicardi ◽  
Roberto Corradini ◽  
...  

Peptide nucleic acids (PNAs) have been demonstrated to be very useful tools for gene regulation at different levels and with different mechanisms of action. In the last few years the use of PNAs for targeting microRNAs (anti-miRNA PNAs) has provided impressive advancements. In particular, targeting of microRNAs involved in the repression of the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is defective in cystic fibrosis (CF), is a key step in the development of new types of treatment protocols. In addition to the anti-miRNA therapeutic strategy, inhibition of miRNA functions can be reached by masking the miRNA binding sites present within the 3′UTR region of the target mRNAs. The objective of this study was to design a PNA masking the binding site of the microRNA miR-145-5p present within the 3′UTR of the CFTR mRNA and to determine its activity in inhibiting miR-145-5p function, with particular focus on the expression of both CFTR mRNA and CFTR protein in Calu-3 cells. The results obtained support the concept that the PNA masking the miR-145-5p binding site of the CFTR mRNA is able to interfere with miR-145-5p biological functions, leading to both an increase of CFTR mRNA and CFTR protein content.


2004 ◽  
Vol 15 (2) ◽  
pp. 563-574 ◽  
Author(s):  
Tsukasa Okiyoneda ◽  
Kazutsune Harada ◽  
Motohiro Takeya ◽  
Kaori Yamahira ◽  
Ikuo Wada ◽  
...  

The most common cystic fibrosis transmembrane conductance regulator (CFTR) mutant in cystic fibrosis patients, ΔF508 CFTR, is retained in the endoplasmic reticulum (ER) and is consequently degraded by the ubiquitin-proteasome pathway known as ER-associated degradation (ERAD). Because the prolonged interaction of ΔF508 CFTR with calnexin, an ER chaperone, results in the ERAD of ΔF508 CFTR, calnexin seems to lead it to the ERAD pathway. However, the role of calnexin in the ERAD is controversial. In this study, we found that calnexin overexpression partially attenuated the ERAD of ΔF508 CFTR. We observed the formation of concentric membranous bodies in the ER upon calnexin overexpression and that the ΔF508 CFTR but not the wild-type CFTR was retained in the concentric membranous bodies. Furthermore, we observed that calnexin overexpression moderately inhibited the formation of aggresomes accumulating the ubiquitinated ΔF508 CFTR. These findings suggest that the overexpression of calnexin may be able to create a pool of ΔF508 CFTR in the ER.


2007 ◽  
Vol 282 (46) ◽  
pp. 33247-33251 ◽  
Author(s):  
Ying Wang ◽  
Tip W. Loo ◽  
M. Claire Bartlett ◽  
David M. Clarke

The most common cause of cystic fibrosis (CF) is defective folding of a cystic fibrosis transmembrane conductance regulator (CFTR) mutant lacking Phe508 (ΔF508). The ΔF508 protein appears to be trapped in a prefolded state with incomplete packing of the transmembrane (TM) segments, a defect that can be repaired by expression in the presence of correctors such as corr-4a, VRT-325, and VRT-532. To determine whether the mechanism of correctors involves direct interactions with CFTR, our approach was to test whether correctors blocked disulfide cross-linking between cysteines introduced into the two halves of a Cys-less CFTR. Although replacement of the 18 endogenous cysteines of CFTR with Ser or Ala yields a Cys-less mutant that does not mature at 37 °C, we found that maturation could be restored if Val510 was changed to Ala, Cys, Ser, Thr, Gly, Ala, or Asp. The V510D mutation also promoted maturation of ΔF508 CFTR. The Cys-less/V510A mutant was used for subsequent cross-linking analysis as it yielded relatively high levels of mature protein that was functional in iodide efflux assays. We tested for cross-linking between cysteines introduced into TM6 and TM7 of Cys-less CFTR/V510A because cross-linking between TM6 and TM7 of P-glycoprotein, the sister protein of CFTR, was inhibited with the corrector VRT-325. Cys-less CFTR/V510A mutant containing cysteines at I340C(TM6) and S877C(TM7) could be cross-linked with a homobifunctional cross-linker. Correctors and the CFTR channel blocker benzbromarone, but not P-glycoprotein substrates, inhibited cross-linking of mutant I340C(TM6)/S877C(TM7). These results suggest that corrector molecules such as corr-4a interact directly with CFTR.


Sign in / Sign up

Export Citation Format

Share Document