scholarly journals Dietary thylakoids reduce visceral fat mass and increase expression of genes involved in intestinal fatty acid oxidation in high-fat fed rats

2016 ◽  
Vol 311 (3) ◽  
pp. R618-R627 ◽  
Author(s):  
Eva-Lena Stenblom ◽  
Emil Egecioglu ◽  
Caroline Montelius ◽  
Deepti Ramachandran ◽  
Britta Bonn ◽  
...  

Thylakoids reduce body weight gain and body fat accumulation in rodents. This study investigated whether an enhanced oxidation of dietary fat-derived fatty acids in the intestine contributes to the thylakoid effects. Male Sprague-Dawley rats were fed a high-fat diet with ( n = 8) or without thylakoids ( n = 8) for 2 wk. Body weight, food intake, and body fat were measured, and intestinal mucosa was collected and analyzed. Quantitative real-time PCR was used to measure gene expression levels of key enzymes involved in fatty acid transport, fatty acid oxidation, and ketogenesis. Another set of thylakoid-treated ( n = 10) and control rats ( n = 10) went through indirect calorimetry. In the first experiment, thylakoid-treated rats ( n = 8) accumulated 25% less visceral fat than controls. Furthermore, fatty acid translocase ( Fat/Cd36), carnitine palmitoyltransferase 1a ( Cpt1a), and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 ( Hmgcs2) genes were upregulated in the jejunum of the thylakoid-treated group. In the second experiment, thylakoid-treated rats ( n = 10) gained 17.5% less weight compared with controls and their respiratory quotient was lower, 0.86 compared with 0.91. Thylakoid-intake resulted in decreased food intake and did not cause steatorrhea. These results suggest that thylakoids stimulated intestinal fatty acid oxidation and ketogenesis, resulting in an increased ability of the intestine to handle dietary fat. The increased fatty acid oxidation and the resulting reduction in food intake may contribute to the reduced fat accumulation in thylakoid-treated animals.

2007 ◽  
Vol 293 (1) ◽  
pp. R106-R115 ◽  
Author(s):  
Ruth B. S. Harris ◽  
Tiffany D. Mitchell ◽  
Emily W. Kelso ◽  
W. P. Flatt

Loss of body fat in leptin-treated animals has been attributed to reduced energy intake, increased thermogenesis, and preferential fatty acid oxidation. Leptin does not decrease food intake or body fat in leptin-resistant high-fat (HF)-fed mice, possibly due to a failure of leptin to activate hypothalamic receptors. We measured energy expenditure of male C57BL/6 mice adapted to low-fat (LF) or HF diet and infused them for 13 days with PBS or 10 μg leptin/day from an intraperitoneal miniosmotic pump to test whether leptin resistance prevented leptin-induced increases in energy expenditure and fatty acid oxidation. There was no effect of low-dose leptin infusions on either of these measures in LF-fed or HF-fed mice, even though LF-fed mice lost body fat. Experiment 2 tested leptin responsiveness in LF-fed and HF-fed mice housed at different temperatures (18°C, 23°C, 27°C), assuming that the cold would increase and the hot environment would inhibit food intake and thermogenesis, which could potentially interfere with leptin action. LF-fed mice housed at 23°C were the only mice that lost body fat during leptin infusion, suggesting that an ability to modify energy expenditure is essential to the maintenance of leptin responsiveness. HF-fed mice in cold or warm environments did not respond to leptin. HF-fed mice in the hot environment were fatter than other HF-fed mice, and, surprisingly, leptin caused a further increase in body fat, demonstrating that the mice were not totally leptin resistant and that partial leptin resistance in a hot environment favors positive energy balance and fat deposition.


1989 ◽  
Vol 257 (6) ◽  
pp. R1322-R1327 ◽  
Author(s):  
T. R. Kasser ◽  
R. B. Harris ◽  
R. J. Martin

Rates of in vitro glucose and fatty acid oxidation were examined in four brain sites during hypophagic and hyperphagic recovery of normal body weight. Rats were fed 40, 100, or 160% of normal intake, via gastric intubation, for 3 wk. Another group of rats was starved until body weight loss was equivalent to weight loss in 40%-fed rats. Groups of rats were killed at the conclusion of tube feeding or fasting and at specific periods during recovery of body weight. Brain sites examined were the ventrolateral hypothalamus (VLH), ventromedial hypothalamus (VMH), a caudal brain stem site encompassing the area postrema-nucleus of the solitary tract (AP-NTS), and cortex. During recovery, rats previously fed 160% of normal intake (anorectic) maintained low rates of VLH fatty acid oxidation and were hypophagic until most excess fat was depleted. Conversely, rats previously fed 40% of normal intake (hungry) maintained high rates of VLH fatty acid oxidation and were hyperphagic until most deficient fat was repleted. Rats previously starved maintained high rates of VLH fatty acid oxidation during hyperphagic recovery, although levels of VLH fatty acid oxidation and food intake were initially low on refeeding. Rates of glucose oxidation in the brain sites examined did not relate well to energy balance status and the needed adjustments in food intake. The results indicated that the level of glucose oxidation in the VLH and AP-NTS responded to the level of energy immediately coming into the system (food intake).(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 727 ◽  
pp. 66-74 ◽  
Author(s):  
Masanori Yokono ◽  
Toshiyuki Takasu ◽  
Yuka Hayashizaki ◽  
Keisuke Mitsuoka ◽  
Rumi Kihara ◽  
...  

2008 ◽  
Vol 100 (6) ◽  
pp. 1200-1212 ◽  
Author(s):  
Zhen-Yu Du ◽  
Pierre Clouet ◽  
Pascal Degrace ◽  
Wen-Hui Zheng ◽  
Livar Frøyland ◽  
...  

We investigated whether the hypolipidaemic effect of fenofibrate and fasting observed in most omnivorous mammals may also apply to herbivorous fish. Grass carp (Ctenopharyngodon idella) fed a high-fat (8 %) diet exhibited a marked increase in blood lipids and body fat after 6 weeks. They were then treated with fenofibrate (100 mg/kg body weight) in the same high-fat diet for 2 weeks, followed by fasting for 1 week. Plasma lipid concentration, body fat amount, fatty acid composition, plasma thiobarbituric acid-reactive substances and some parameters related to hepatic fatty acid oxidation were measured, and liver samples were stained for histological examination. Fenofibrate treatment decreased TAG and cholesterol concentrations in plasma, total lipids of the whole body and liver, and EPA and DHA contents in tissues. Further, a mobilisation of mesenteric fat concomitant with an increase in hepatic peroxisomal fatty acid oxidation and lipid peroxidation was observed. Compared with fenofibrate treatment, fasting decreased body weight and plasma TAG, but not plasma cholesterol. It also reduced the fat content of the whole body and increased the EPA and DHA contents in the liver and other tissues. Fatty acid oxidation was stimulated by fasting in mitochondria, but not in peroxisomes. These data suggest that fenofibrate and fasting regulate the lipid metabolism in grass carp through different metabolic pathways. The grass carp is moderately responsive to a fibrate derivative in comparison with the well-known excess responsiveness of the rat model, and so it could be used for the study of lipid abnormalities as a herbivorous model.


1978 ◽  
Vol 108 (10) ◽  
pp. 1621-1634 ◽  
Author(s):  
Ronald G. Wolfe ◽  
Charles V. Maxwell ◽  
Eldon C. Nelson

1978 ◽  
Vol 157 (2) ◽  
pp. 278-281 ◽  
Author(s):  
D. R. Romsos ◽  
M. J. Hornshuh ◽  
G. A. Leveille
Keyword(s):  
Body Fat ◽  

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Dan Shao ◽  
Nathan Roe ◽  
Loreta D Tomasi ◽  
Alyssa N Braun ◽  
Ana Mattos ◽  
...  

In the obese and diabetic heart, an imbalance between fatty acid uptake and fatty acid oxidation (FAO) promotes the development of cardiac lipotoxicity. We previously showed that cardiac specific deletion of acetyl CoA carboxylase 2 (ACC2) was effective in increasing myocardial FAO while maintaining normal cardiac function and energetics. In this study, we tested the hypothesis that ACC2 deletion in an adult heart would prevent the cardiac lipotoxic phenotype in a mouse model of diet-induced obesity. ACC2 flox/flox (CON) and ACC2 flox/flox-MerCreMer+ (iKO) after tamoxifen injection were subjected to a high fat diet (HFD) for 24 weeks. HFD induced similar body weight gain and glucose intolerance in CON and iKO. In isolated Langendorff-perfused heart experiments, HFD feeding increased FAO 1.6-fold in CON mice which was increased to 2.5-fold in iKO mice compared with CON on chow diet. Fractional shortening was significantly decreased in CON-HFD (32.8±2.8% vs. 39.2±3.2%, p< 0.05, n=5-6), but preserved in iKO-HFD mice (42.8±2.3%, vs. 38.5±1.4%, n=6), compared to respective chow fed controls. Diastolic function, assessed by E’/A’ ratio using tissue Doppler imaging, was significantly decreased in CON-HFD mice (1.11±0.08 vs. 0.91±0.09, p<0.05 n=5-6), while no difference was observed in iKO-HFD compared to iKO-chow (1.10±0.03 vs. 1.09±0.04, n=6). Heart weight /Tibia length ratio was significantly higher in CON than iKO mice after HFD feeding (7.19±0.22 vs. 6.47±0.28, p<0.05, n=6). Furthermore, HFD induced mitochondria super complex II, III and V instability, which was attenuated in iKO-HFD mice. These data indicate that elevated myocardial FAO per se does not cause the development of cardiac dysfunction in obese animals. In fact, enhancing FAO via ACC2 deletion prevents HFD induced cardiac dysfunction and attenuates pathological hypertrophy. These effects may be mediated, in part, by maintenance of mitochondrial integrity. Taken together, our findings suggest that promoting cardiac FAO is an effective strategy to resist the development of cardiac lipotoxicity during diet-induced obesity.


Sign in / Sign up

Export Citation Format

Share Document