Dietary protein digestion and absorption are impaired during acute postexercise recovery in young men

2013 ◽  
Vol 304 (5) ◽  
pp. R356-R361 ◽  
Author(s):  
Kim van Wijck ◽  
Bart Pennings ◽  
Annemarie A. van Bijnen ◽  
Joan M. G. Senden ◽  
Wim A. Buurman ◽  
...  

Previously, we demonstrated that exercise can cause small intestinal injury, leading to loss of gut barrier function. The functional consequences of such exercise-induced intestinal injury on subsequent food digestion and absorption are unclear. The present study determined the impact of resistance-type exercise on small intestinal integrity and in vivo dietary protein digestion and absorption kinetics. Twenty-four young males ingested 20 g specifically produced intrinsically l-[1-13C]phenylalanine-labeled protein at rest or after performing a single bout of resistance-type exercise. Continuous intravenous infusions with l-[ring-2H5]phenylalanine were employed, and blood samples were collected regularly to assess in vivo protein digestion and absorption kinetics and to quantify plasma levels of intestinal fatty-acid binding protein (I-FABP) as a measure of small intestinal injury. Plasma I-FABP levels were increased after exercise by 35%, reaching peak values of 344 ± 53 pg/ml compared with baseline 254 ± 31 pg/ml ( P < 0.05). In resting conditions, I-FABP levels remained unchanged. Dietary protein digestion and absorption rates were reduced during postexercise recovery when compared with resting conditions ( P < 0.001), with average peak exogenous phenylalanine appearance rates of 0.18 ± 0.04 vs. 0.23 ± 0.03 mmol phenylalanine·kg lean body mass−1·min−1, respectively. Plasma I-FABP levels correlated with in vivo rates of dietary protein digestion and absorption ( r S = −0.57, P < 0.01). Resistance-type exercise induces small intestinal injury in healthy, young men, causing impairments in dietary protein digestion and absorption kinetics during the acute postexercise recovery phase. To the best of our knowledge, this is first evidence that shows that exercise attenuates dietary protein digestion and absorption kinetics during acute postexercise recovery.

Digestion ◽  
2012 ◽  
Vol 86 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Yun Jeong Lim ◽  
Tri M. Phan ◽  
Elizabeth J. Dial ◽  
David Y. Graham ◽  
Lenard M. Lichtenberger

2012 ◽  
Vol 302 (1) ◽  
pp. E52-E60 ◽  
Author(s):  
Bart B. L. Groen ◽  
Peter T. Res ◽  
Bart Pennings ◽  
Elisabeth Hertle ◽  
Joan M. G. Senden ◽  
...  

The loss of skeletal muscle mass with aging has been attributed to an impaired muscle protein synthetic response to food intake. Therefore, nutritional strategies are targeted to modulate postprandial muscle protein accretion in the elderly. The purpose of this study was to assess the impact of protein administration during sleep on in vivo protein digestion and absorption kinetics and subsequent muscle protein synthesis rates in elderly men. Sixteen healthy elderly men were randomly assigned to an experiment during which they were administered a single bolus of intrinsically l-[1-13C]phenylalanine-labeled casein protein (PRO) or a placebo (PLA) during sleep. Continuous infusions with l-[ ring-2H5]phenylalanine and l-[ ring-2H2]tyrosine were applied to assess in vivo dietary protein digestion and absorption kinetics and subsequent muscle protein synthesis rates during sleep. We found that exogenous phenylalanine appearance rates increased following protein administration. The latter stimulated protein synthesis, resulting in a more positive overnight whole body protein balance (0.30 ± 0.1 vs. 11.8 ± 1.0 μmol phenylalanine·kg−1·h−1 in PLA and PRO, respectively; P < 0.05). In agreement, overnight muscle protein fractional synthesis rates were much greater in the PRO experiment (0.045 ± 0.002 vs. 0.029 ± 0.002%/h, respectively; P < 0.05) and showed abundant incorporation of the amino acids ingested via the intrinsically labeled protein (0.058 ± 0.006%/h). This is the first study to show that dietary protein administration during sleep is followed by normal digestion and absorption kinetics, thereby stimulating overnight muscle protein synthesis. Dietary protein administration during sleep stimulates muscle protein synthesis and improves overnight whole body protein balance. These findings may provide a basis for novel interventional strategies to attenuate muscle mass loss.


Digestion ◽  
2010 ◽  
Vol 82 (3) ◽  
pp. 167-172 ◽  
Author(s):  
Shunji Fujimori ◽  
Yoko Takahashi ◽  
Tsuguhiko Seo ◽  
Katya Gudis ◽  
Akihito Ehara ◽  
...  

1983 ◽  
Vol 23 (7) ◽  
pp. 652
Author(s):  
Peter Mucha ◽  
Michael B. Farnell ◽  
Richard S. Bryan

2020 ◽  
Vol 150 (8) ◽  
pp. 2041-2050 ◽  
Author(s):  
Stefan H M Gorissen ◽  
Jorn Trommelen ◽  
Imre W K Kouw ◽  
Andrew M Holwerda ◽  
Bart Pennings ◽  
...  

ABSTRACT Background Dietary protein ingestion stimulates muscle protein synthesis by providing amino acids to the muscle. The magnitude and duration of the postprandial increase in muscle protein synthesis rates are largely determined by dietary protein digestion and amino acid absorption kinetics. Objective We assessed the impact of protein type, protein dose, and age on dietary protein digestion and amino acid absorption kinetics in vivo in humans. Methods We included data from 18 randomized controlled trials with a total of 602 participants [age: 53 ± 23 y; BMI (kg/m2): 24.8 ± 3.3] who consumed various quantities of intrinsically l-[1-13C]-phenylalanine–labeled whey (n = 137), casein (n = 393), or milk (n = 72) protein and received intravenous infusions of l-[ring-2H5]-phenylalanine, which allowed us to assess protein digestion and phenylalanine absorption kinetics and the postprandial release of dietary protein–derived phenylalanine into the circulation. The effect of aging on these processes was assessed in a subset of 82 young (aged 22 ± 3 y) and 83 older (aged 71 ± 5 y) individuals. Results A total of 50% ± 14% of dietary protein–derived phenylalanine appeared in the circulation over a 5-h postprandial period. Casein ingestion resulted in a smaller (45% ± 11%), whey protein ingestion in an intermediate (57% ± 10%), and milk protein ingestion in a greater (65% ± 13%) fraction of dietary protein–derived phenylalanine appearing in the circulation (P &lt; 0.001). The postprandial availability of dietary protein–derived phenylalanine in the circulation increased with the ingestion of greater protein doses (P &lt; 0.05). Protein digestion and phenylalanine absorption kinetics were attenuated in older when compared with young individuals, with 45% ± 10% vs. 51% ± 14% of dietary protein–derived phenylalanine appearing in the circulation, respectively (P = 0.001). Conclusions Protein type, protein dose, and age modulate dietary protein digestion and amino acid absorption kinetics and subsequent postprandial plasma amino acid availability in vivo in humans. These trials were registered at clinicaltrials.gov as NCT00557388, NCT00936039, NCT00991523, NCT01317511, NCT01473576, NCT01576848, NCT01578590, NCT01615276, NCT01680146, NCT01820975, NCT01986842, and NCT02596542, and at http://www.trialregister.nl as NTR3638, NTR3885, NTR4060, NTR4429, and NTR4492.


Author(s):  
Sanghee Park ◽  
David D. Church ◽  
Carlene Starck ◽  
Scott E. Schutzler ◽  
Gohar Azhar ◽  
...  

Abstract Purpose The purpose of the study was to determine if an actinidin protease aids gastric digestion and the protein anabolic response to dietary protein. Methods Hayward green kiwifruit (containing an actinidin protease) and Hort 16A gold kiwifruit (devoid of actinidin protease) were given in conjunction with a beef meal to healthy older subjects. Twelve healthy older males (N = 6) and females (N = 6) were studied with a randomized, double-blinded, crossover design to assess muscle and whole-body protein metabolism before and after ingestion of kiwifruit and 100 g of ground beef. Subjects consumed 2 of each variety of kiwifruit daily for 14 d prior to each metabolic study, and again during each study with beef intake. Results Hayward green kiwifruit consumption with beef resulted in a more rapid increase in peripheral plasma essential amino acid concentrations. There were significant time by kiwifruit intake interactions for plasma concentrations of EAAs, branched chain amino acids (BCAAs), and leucine (P < 0.01). However, there was no difference in the total amount of EAAs absorbed. As a result, there were no differences between kiwifruit in any of the measured parameters of protein kinetics. Conclusion Consumption of Hayward green kiwifruit, with a beef meal facilitates protein digestion and absorption of the constituent amino acids as compared to Hort 16A gold kiwifruit. Clinical trial NCT04356573, April 21, 2020 “retrospectively registered”.


Sign in / Sign up

Export Citation Format

Share Document