Nonshivering thermogenesis and the thermogenic capacity of brown fat in fasted and/or refed mice

1988 ◽  
Vol 254 (1) ◽  
pp. R11-R16 ◽  
Author(s):  
P. Trayhurn ◽  
G. Jennings

The effects of fasting and refeeding on nonshivering thermogenesis and the properties of brown adipose tissue have been investigated in mice. Fasting for 48 h led to a substantial reduction in the capacity for nonshivering thermogenesis, and there was no recovery of thermogenic capacity during the first 5 days of refeeding. A period of 10-15 days of refeeding was required for full restoration of thermogenic capacity. The mice were hyperphagic during the first 6 days of refeeding, but body weight was recovered after 24 h. The amount of interscapular brown adipose tissue decreased substantially on fasting, but it recovered 24 h after the initiation of refeeding. Cytochrome oxidase activity, the level of mitochondrial GDP binding, and the specific mitochondrial concentration of uncoupling protein in brown adipose tissue were each reduced by fasting. Although both GDP binding and the specific concentration of uncoupling protein rapidly returned to normal on refeeding, the activity of cytochrome oxidase was not normalized until 10 days after the end of the fast. These results indicate that a prolonged period of refeeding is required for the recovery in the capacity for nonshivering thermogenesis following a fast, a similar time course being evident for the recovery of cytochrome oxidase activity in brown adipose tissue. It is suggested that the fasting-induced reduction in the capacity for nonshivering thermogenesis is linked primarily to a loss of mitochondria from brown adipose tissue and that the normalization of thermogenic capacity is dependent on the restoration of mitochondrial mass.

1986 ◽  
Vol 6 (9) ◽  
pp. 805-810 ◽  
Author(s):  
P. Trayhurn ◽  
G. Jennings

The effects of fasting and refeeding on the concentration of uncoupling protein in brown adipose tissue mitochondria have been investigated in mice. Fasting mice for 48 h led to a large decrease in the total cytochrome oxidase activity of the interscapular brown fat pad. Mitochondrial GDP binding and the specific mitochondrial concentration of uncoupling protein also fell on fasting. After 24 h refeeding both GDP binding and the mitochondrial concentration of uncoupling protein were normalized, but there was no alteration in the total tissue cytochrome oxidase activity. Fasting appears to induce a selective loss of uncoupling protein from brown adipose tissue mitochondria, which is rapidly reversible on refeeding.


1983 ◽  
Vol 214 (1) ◽  
pp. 265-268 ◽  
Author(s):  
K S Galpin ◽  
R G Henderson ◽  
W P T James ◽  
P Trayhurn

Cytochrome oxidase activity and mitochondrial GDP binding were decreased in brown adipose tissue of mice treated chronically with corticosterone. These changes occurred both in corticosterone-treated mice fed ad libitum and in treated mice pair-fed to control animals. Although the dietary stimulation of brown-adipose-tissue thermogenesis was suppressed by corticosterone, the acute response to cold was not affected.


1971 ◽  
Vol 49 (6) ◽  
pp. 545-553 ◽  
Author(s):  
Jean Himms–Hagen

The aim of these experiments was to depress the increased metabolic activity of the brown adipose tissue in the intact rat during acclimation to cold in order to elucidate further the possible thermogenic and endocrine functions of this tissue. The antibiotic oxytetracycline was administered twice daily for 2 weeks to rats living at 4 °C in an attempt to inhibit the proliferation of mitochondria and of mitochondrial inner membrane known to occur in the brown adipose tissue in response to cold; control rats received saline during the same period. Total cytochrome oxidase activity served as an index of the amount of mitochondrial inner membrane in brown adipose tissue, liver, and skeletal muscle. The development of an enhanced calorigenic response to intravenously infused noradrenaline served as an index of the extent of acclimation to cold.Treatment with oxytetracycline inhibited both the cold-induced increase in cytochrome oxidase activity in brown adipose tissue and the cold-induced development of an enhanced calorigenic response to noradrenaline in the intact rats; a direct correlation was noted between the amount of cytochrome oxidase in brown adipose tissue and the size of the metabolic response to noradrenaline of the intact animals. However, the amount of oxygen that could be consumed by the total cytochrome oxidase in the brown adipose tissue was itself too small to account for the increase in oxygen consumption by the rat. Treatment of the rats with oxytetracycline did not alter the cold-induced growth of brown adipose tissue (as judged by the increase in wet weight and the increase in total protein); it also did not alter the cytochrome oxidase activities of liver or skeletal muscle. The effect of oxytetracycline seems, therefore, to be fairly specific for the mitochondria of the most rapidly dividing tissue, the brown adipose tissue. The conclusion is drawn that a protein synthesized in the mitochondria of the brown adipose tissue in response to cold is essential for adaptation to cold.


1998 ◽  
Vol 139 (4) ◽  
pp. 433-437 ◽  
Author(s):  
M Puerta ◽  
M Rocha ◽  
S Gonzalez-Covaleda ◽  
S. McBennett ◽  
J. Andrews

1993 ◽  
Vol 265 (6) ◽  
pp. C1674-C1680 ◽  
Author(s):  
C. Atgie ◽  
A. Marette ◽  
M. Desautels ◽  
O. Tulp ◽  
L. J. Bukowiecki

The metabolic properties of brown adipose tissue (BAT), liver, and skeletal muscles were compared in lean and obese diabetic SHR/N-cp rats (a new model of type II diabetes) to test whether the severe insulin resistance of obese animals is specifically associated with a thermogenic defect in BAT. The respiratory response of brown adipocytes to norepinephrine and to agents bypassing the adenylate cyclase complex (dibutyryl cyclic AMP and palmitate) was decreased by two-thirds in obese rats, thereby indicating the presence of a major postreceptor defect. Significantly, total BAT cytochrome oxidase activity, uncoupling protein content, and mitochondrial guanosine 5'-diphosphate binding (3 indexes of BAT thermogenic capacity) were also decreased by two-thirds. The specific activities of these parameters expressed per total BAT mitochondrial protein were not altered either. This indicates that the total number of mitochondria per cell is decreased in BAT of obese rats. In contrast, total tissue cytochrome oxidase activity, protein content, and DNA content all increased by two to three times in the liver of obese SHR/N-cp rats, but these parameters remained unchanged in skeletal muscles (vastus lateralis and soleus). Such a remarkable liver hypertrophy may have occurred as a consequence of the persistent hyperphagia-hyperinsulinemia of obese rats that induced a hyperplasia and/or a hepatocyte polyploidization. This observation together with the fact that daily energy expenditure associated with food intake was markedly increased in obese rats (representing as much as 25% of the total energy expenditure) strongly suggests that the liver plays a major role in energy balance in these animals.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 268 (1) ◽  
pp. R183-R191 ◽  
Author(s):  
A. M. Strack ◽  
M. J. Bradbury ◽  
M. F. Dallman

Brown adipose tissue (BAT) contains glucocorticoid receptors; glucocorticoids are required for maintaining differentiated BAT in culture. These studies were performed to determine the effects of corticosterone on BAT thermogenic function and lipid storage. Rats were adrenalectomized and given subcutaneous corticosterone pellets in concentrations that maintained plasma corticosterone constant across the range of 0-20 micrograms/dl or were sham adrenalectomized. All variables were examined 5 days after surgery and corticosterone replacement. Measures of BAT function-thermogenic capacity [guanosine 5'-diphosphate (GDP) binding and uncoupling protein (UCP; a BAT-specific thermogenic protein)] and storage (BAT wet wt, protein, and DNA levels) were made. Plasma hormones (corticosterone, adrenocorticotropic hormone, insulin, 3,3',5-triiodothyronine, and thyroxine were measured. Corticosterone significantly affected BAT thermogenic measures: UCP content and binding of GDP to BAT mitochondria decreased with increasing corticosterone; GDP binding characteristics in BAT from similarly prepared rats examined by Scatchard analysis showed that maximum binding (Bmax) and dissociation constant (Kd) decreased with increasing corticosterone dose. BAT DNA was increased by adrenalectomy and maintained at intact levels with all doses of corticosterone; BAT lipid storage increased dramatically at corticosterone values higher than the daily mean level in intact rats. Histologically, the number and size of lipid droplets within BAT adipocytes increased markedly with increased corticosterone. White adipose depots were more sensitive to circulating corticosterone concentrations than were BAT depots and increased in weight at levels of corticosterone that were at or below the daily mean level of intact rats. We conclude that, within its diurnal range of concentration corticosterone acts to inhibit nonshivering thermogenesis and increase lipid storage.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 291 (1) ◽  
pp. 109-113 ◽  
Author(s):  
R Burcelin ◽  
J Kande ◽  
D Ricquier ◽  
J Girard

We have studied the time course and relative effects of hypoinsulinaemia and hyperglycaemia on concentrations of uncoupling protein (UCP) and glucose transporter (GLUT4) and their mRNAs in brown adipose tissue (BAT) during the early phase of diabetes induced by streptozotocin. Two days after intravenous injection of streptozotocin, plasma insulin concentration was at its lowest and glycaemia was higher than 22 mmol/l. After 3 days, a 60% decrease in BAT UCP mRNA concentration and a 36% decrease in UCP was observed. Concomitantly, there was an 80% decrease in GLUT4 mRNA and a 44% decrease in GLUT4 levels. When hyperglycaemia was prevented by infusing phlorizin into diabetic rats, BAT UCP mRNA and protein levels were further decreased (respectively 90% and 60% lower than in control rats). In contrast, the marked decreases in GLUT4 mRNA and protein concentrations in BAT were similar in hyperglycaemic and normoglycaemic diabetic rats. Infusion of physiological amounts of insulin restored normoglycaemia in diabetic rats, and BAT UCP and GLUT4 mRNA and protein concentrations were maintained at the level of control rats. When insulin infusion was stopped, a 75% decrease in BAT UCP mRNA level and a 75% decrease in GLUT4 mRNA level were observed after 24 h, but UCP and GLUT4 concentrations did not decrease. This study shows that insulin plays an important role in the regulation of UCP and GLUT4 mRNA and protein concentrations in BAT. Hyperglycaemia partially prevents the rapid decrease in concentration of UCP and its mRNA observed in insulinopenic diabetes whereas it did not affect the decrease in GLUT4 mRNA and protein concentration. It is suggested that UCP is produced by a glucose-dependent gene.


1980 ◽  
Vol 239 (1) ◽  
pp. C18-C22 ◽  
Author(s):  
J. Himms-Hagen ◽  
C. Gwilliam

The size (wet weight, total protein, total cytochrome oxidase) of interscapular brown adipose tissue is reduced to about one-half of normal in the cardiomyopathic hamster (BIO 14.6). The mitochondria are normal in binding of purine nucleotides [guanosine 5'-diphosphate (GDP)] and in proportion of polypeptides in the region of 32,000, both indices of the thermogenic proton conductance pathway, and in specific activity of cytochrome oxidase. Brown adipose tissue of the cardiomyopathic hamster can grow during acclimation to 4 degrees C, but its size remains smaller than in cold-acclimated normal hamsters. Mitochondrial polypeptide composition is not altered by acclimation to cold, but a large increase in mitochondrial GDP binding occurs in both normal and cardiomyopathic hamsters. The reduced calorigenic response of cardiomyopathic hamsters to catecholamines (Horwitz, B.A., and G.E. Hanes, Proc. Soc. Exp. Biol. Med. 147: 393-395, 1974) may, at least in part, be explained by a reduction in the amount of brown adipose tissue, the major site of this response. A defect in control of growth of this tissue in the cardiomyopathic hamster is suggested.


Sign in / Sign up

Export Citation Format

Share Document