Arginine vasopressin mediates cardiovascular responses to hypoxemia in fetal sheep

1989 ◽  
Vol 256 (5) ◽  
pp. R1011-R1018 ◽  
Author(s):  
R. Perez ◽  
M. Espinoza ◽  
R. Riquelme ◽  
J. T. Parer ◽  
A. J. Llanos

Acute hypoxemia results in hypertension, bradycardia, and cardiac output redistribution in fetal sheep. The blood flow redistribution is produced by differential changes in vascular resistance of various fetal organs. alpha-Adrenergic activity is one of the few vasoconstrictor mechanisms thus far identified in the hypoxemic fetal sheep. Arginine vasopressin (AVP) is a potent vasoconstrictor in adults. Since AVP administration to the normoxic fetus mimics some of the fetal cardiovascular responses to hypoxemia and fetal plasma AVP levels increase with hypoxemia, we examined the hypothesis that AVP modifies the fetal cardiovascular response to hypoxemia by changing the vascular resistance of some fetal vascular beds. To test this we determined fetal systemic arterial pressure and fetal cardiac output and its distribution during hypoxemia with and without the V1 AVP antagonist d(CH2)5-Tyr(Me)AVP. Fourteen fetal sheep (0.79-0.90 of gestation) were chronically catheterized. Five days after surgery fetal hypoxemia was induced by introducing a mixture of 95% N2-5% CO2 (10-20 l/min) into a maternal tracheal catheter. The hypoxemia was maintained for 40 min. Fetal heart rate, systemic arterial blood pressure, and combined ventricular output and its distribution (radiolabeled microspheres) were measured before hypoxemia, at 20 min of hypoxemia alone, and at 20 min of hypoxemia plus either AVP antagonist (n = 5) or NaCl 0.9% (n = 5, controls). Fetal hypertension and bradycardia were partially reversed after the AVP antagonist administration during hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)

1993 ◽  
Vol 264 (2) ◽  
pp. R324-R330 ◽  
Author(s):  
H. G. Chen ◽  
C. E. Wood

Previous studies have demonstrated that fetal adrenocorticotropic hormone (ACTH) and arginine vasopressin (AVP) are increased during periods of acidemia produced by infusion of acid intravenously or by acidemia secondary to hypovolemia. The purpose of this study was to quantify ACTH and AVP responses to hypercapnic acidemia and to test the role of the peripheral chemoreceptors in the control of these responses. Chronically catheterized fetal sheep were subjected to carotid sinus denervation and bilateral vagotomy or were studied intact. At least 5 days after surgery, fetuses were exposed to a 60-min period of normocapnia or hypercapnia, delivered via a polyethylene bag containing 5-8% CO2 in 21% O2 fitted over the head of the pregnant ewe. Hypercapnia significantly increased fetal arterial PCO2 to 55.2 +/- 1.8 and 55.9 +/- 2.2 mmHg and decreased arterial pH to 7.257 +/- 0.011 and 7.281 +/- 0.010 in intact and denervated fetuses, respectively. Fetal mean arterial blood pressure was decreased slightly in the denervated fetuses during hypercapnia. Fetal plasma AVP was increased in both groups equally, and plasma ACTH and cortisol were increased in the denervated fetuses only. Fetal heart rate was increased significantly in intact but not denervated fetuses. We conclude that respiratory acidemia is a mild stimulus to AVP secretion and that this response is not attenuated by peripheral chemodenervation.


1995 ◽  
Vol 7 (3) ◽  
pp. 549 ◽  
Author(s):  
AJ Llanos ◽  
RA Riquelme ◽  
FA Moraga ◽  
G Cabello ◽  
JT Parer

The fetal llama exposed to an intense degree of hypoxaemia did not increase cerebral blood flow, but showed a marked peripheral vasoconstriction. The same cardiovascular response is observed in fetal sheep submitted to a extremely severe hypoxaemia, when the initial compensatory vasodilatory mechanisms in brain and heart fail. To investigate whether the fetal llama responses to acute hypoxaemia are adaptive, or whether they are the result of a breakdown of mechanisms of blood flow redistribution that favours the central nervous system, we studied seven fetal llamas (0.6-0.7 of gestation) chronically-catheterized during 1 h of graded and progressive hypoxaemia. Fetal ascending aorta blood gases and fetal cardiac output and its distribution (radiolabelled-microspheres) were measured after 60 min of normoxaemia (B) and at the end of 20 min (H20), 40 min (H40) and 60 min (H60) of hypoxaemia. Data were analysed by ANOVA and Newman-Keuls tests. Each treatment resulted in a lower (P < 0.05) percentage of haemoglobin saturation than hypoxaemia; H40 was lower than H20, and H60 was lower than H20 and H40. No statistical difference was observed among treatments for cardiac output or cerebral blood flow. These results demonstrate that fetal cardiac output and brain blood flow are maintained at all degrees of hypoxaemia, indicating that these cardiovascular responses are an adaptive response in the llama fetus, rather than an index of cardiorespiratory decompensation.


2015 ◽  
Vol 309 (4) ◽  
pp. H605-H614 ◽  
Author(s):  
Daniel Yoo ◽  
Ryan C. Jupiter ◽  
Edward A. Pankey ◽  
Vishwaradh G. Reddy ◽  
Justin A. Edward ◽  
...  

Hydrogen sulfide (H2S) is an endogenous gaseous molecule formed from L-cysteine in vascular tissue. In the present study, cardiovascular responses to the H2S donors Na2S and NaHS were investigated in the anesthetized rat. The intravenous injections of Na2S and NaHS 0.03–0.5 mg/kg produced dose-related decreases in systemic arterial pressure and heart rate, and at higher doses decreases in cardiac output, pulmonary arterial pressure, and systemic vascular resistance. H2S infusion studies show that decreases in systemic arterial pressure, heart rate, cardiac output, and systemic vascular resistance are well-maintained, and responses to Na2S are reversible. Decreases in heart rate were not blocked by atropine, suggesting that the bradycardia was independent of parasympathetic activation and was mediated by an effect on the sinus node. The decreases in systemic arterial pressure were not attenuated by hexamethonium, glybenclamide, Nw-nitro-l-arginine methyl ester hydrochloride, sodium meclofenamate, ODQ, miconazole, 5-hydroxydecanoate, or tetraethylammonium, suggesting that ATP-sensitive potassium channels, nitric oxide, arachidonic acid metabolites, cyclic GMP, p450 epoxygenase metabolites, or large conductance calcium-activated potassium channels are not involved in mediating hypotensive responses to the H2S donors in the rat and that responses are not centrally mediated. The present data indicate that decreases in systemic arterial pressure in response to the H2S donors can be mediated by decreases in vascular resistance and cardiac output and that the donors have an effect on the sinus node independent of the parasympathetic system. The present data indicate that the mechanism of the peripherally mediated hypotensive response to the H2S donors is uncertain in the intact rat.


1994 ◽  
Vol 266 (1) ◽  
pp. R215-R220 ◽  
Author(s):  
B. J. Koos ◽  
B. A. Mason ◽  
M. G. Ervin

The effects of adenosine on plasma arginine vasopressin (AVP) concentrations were determined in chronically catheterized fetal sheep (> 0.8 term). Infusion of adenosine [0.35 +/- 0.01 (SE) mg.min-1.kg-1] into the inferior vena cava of six fetuses caused a transient fall in arterial PO2 (by approximately 3 Torr), a slight reduction in arterial pH, and a 5- to 6-mmHg decrease in diastolic pressure without significantly affecting systolic or mean arterial values. A lower rate of infusion (0.19 +/- 0.01 mg.min-1 x kg-1) in five fetuses had virtually no effect on arterial blood gases, pH, or arterial pressures. Both the low- and high-dose adenosine infusions significantly increased fetal plasma AVP concentrations (1.7 +/- 0.2 to 25 +/- 7 pg/ml and 1.6 +/- 0.1 to 54 +/- 8 pg/ml, respectively). Intravenous infusion of papaverine lowered fetal diastolic and mean arterial pressures by approximately 8 mmHg but had no significant effect on plasma levels of AVP. During an hour of isocapnic hypoxia (arterial PO2 12-13 Torr), fetal plasma AVP levels increased from 1.7 +/- 0.2 to 40 +/- 6 pg/ml. Intra-arterial infusion of the adenosine receptor antagonist 8-(p-sulfophenyl)-theophylline significantly blunted the hypoxia-induced rise in plasma AVP concentrations to a maximum mean level of 11 +/- 6 pg/ml. These results indicate that 1) adenosine causes a dose-dependent increase in plasma AVP concentrations and 2) a hypoxia-induced rise in fetal adenosine levels triggers vasopressin release.


2001 ◽  
Vol 281 (1) ◽  
pp. R31-R37 ◽  
Author(s):  
Jay R. Muller ◽  
Khoi M. Le ◽  
William R. Haines ◽  
Qi Gan ◽  
Mark M. Knuepfer

Cocaine or air jet stress evokes pressor responses due to either a large increase in systemic vascular resistance (vascular responders) or small increases in both cardiac output and vascular resistance (mixed responders) in conscious rats. Repeated cocaine administration results in elevated arterial pressure in vascular responders but not in mixed responders. The present study examined the hypothesis that the pattern of cardiovascular responses to an unconditioned stimulus (UCS; air jet) is related to responses to a conditioned stimulus (CS; tone followed by brief foot shock) in individual rats. Our data demonstrate that presentation of the UCS produced variable cardiac output responses that correlated with responses to the CS ( n = 60). We also determined whether individual cardiovascular response patterns to acute stress correlated with predisposition to a sustained stress-induced elevation in arterial pressure. Rats were exposed to three different stressors presented one per day successively for 4 wk and during a poststress period of 3 wk while arterial pressure was recorded periodically. Mean arterial pressure was elevated in all rats during chronic stress but, during the poststress period, remained at significantly higher levels in vascular responders but not mixed responders. Therefore, we conclude that acute behavioral stress to a conditioned stimulus elicits variable hemodynamic responses that predict the predisposition to a sustained stress-induced elevation in arterial pressure.


1988 ◽  
Vol 66 (11) ◽  
pp. 1425-1432 ◽  
Author(s):  
D. A. Cunningham ◽  
R. J. Petrella ◽  
D. H. Paterson ◽  
P. M. Nichol

To test the hypothesis that altered hemodynamic responses to postural changes are associated with aging, cardiovascular responses to head-up tilt (HUT) and head-down tilt (HDT) were examined in 12 healthy young (average age, 24.6 ± 1.7 years) and 12 healthy elderly (average age, 68.6 ± 2.2 years) men. Subjects were passively tilted from supine to 30°, 60°, and 90° HUT and HDT. Responses to these perturbations were determined 5 min after tilting with measures of heart rate (HR), blood pressure (SBP, DBP), and echocardiographically determined left ventricular diameter in systole and diastole (LVIDs, LVIDd). In HUT there were no significant age effects. In both young and elderly, SBP decreased significantly (p < 0.05), and DBP and HR increased significantly. Ejection fraction (EF), mean arterial blood pressure (MABP), and rate-pressure product (RPP) were unchanged in both groups. In HDT, the hemodynamic responses of the young and elderly were in opposite directions and significant age effects were found for SBP, DBP, HR, LVIDs, EF, MABP, and RPP. In HDT, the young appear to increase cardiac output primarily due to an increase in EF and end-diastolic volume (LVIDd), while HR is unchanged and SBP is decreased. MABP is unchanged, suggesting a small decrease in total peripheral resistance. The elderly may increase cardiac output slightly, owing to an increase in LVIDd with no change in EF, and a large increase in HR. Afterload increased markedly, therefore attenuating any increase in cardiac output. These results suggest that in healthy men, the cardiovascular response to HUT is not age related, while conversely there appear to be significant differences between young and elderly in response to HDT.


1986 ◽  
Vol 251 (1) ◽  
pp. R82-R90 ◽  
Author(s):  
J. W. Hubbard ◽  
R. H. Cox ◽  
B. J. Sanders ◽  
J. E. Lawler

Normotensive Wistar-Kyoto (WKY) rats and borderline hypertensive rats (BHR) were exposed to aversive classical conditioning procedures and chronically instrumented with arterial catheters and electromagnetic flow probes around the ascending aorta. After postoperative recovery, hemodynamic measurements and blood samples were obtained from conscious animals at rest and during aversive conditioning. The cardiovascular response to the behavioral stress consisted of a significant increase in mean arterial blood pressure, total peripheral resistance index, cardiac index, heart rate, and aortic dP/dt for both strains. However, the elevated vascular resistance seen in the BHR resulted in a significantly greater increase in mean arterial blood pressure (21 mmHg) compared with the WKY rats (14 mmHg). In addition, the BHR showed a significantly (P less than 0.05) greater plasma norepinephrine concentration (760 +/- 99 pg/ml) in response to the stress than did the WKY rats (559 +/- 53 pg/ml). These data suggest that an increase in cardiac output, elevated vascular resistance, and increased sympathetic drive may contribute to the development of stress-induced hypertension in this animal model.


1991 ◽  
Vol 261 (1) ◽  
pp. H172-H180 ◽  
Author(s):  
L. M. Sassen ◽  
K. Bezstarosti ◽  
W. J. Van der Giessen ◽  
J. M. Lamers ◽  
P. D. Verdouw

Effects of pretreatment with L-propionylcarnitine (50 mg/kg, n = 9) or saline (n = 10) were studied in open-chest anesthetized pigs, in which ischemia was induced by decreasing left anterior descending coronary artery blood flow to 20% of baseline. After 60 min of ischemia, myocardium was reperfused for 2 h. In both groups, flow reduction abolished contractile function of the affected myocardium and caused similar decreases in ATP (by 55%) and energy charge [(ATP + 0.5ADP)/(ATP + ADP + AMP); decrease from 0.91 to 0.60], mean arterial blood pressure (by 10-24%), the maximum rate of rise in left ventricular pressure (by 26-32%), and cardiac output (by 20-30%). During reperfusion, “no-reflow” was attenuated by L-propionylcarnitine, because myocardial blood flow returned to 61 and 82% of baseline in the saline- and L-propionylcarnitine-treated animals, respectively. Cardiac output of the saline-treated animals further decreased (to 52% of baseline), and systemic vascular resistance increased from 46 +/- 3 to 61 +/- 9 mmHg.min.l-1, thereby maintaining arterial blood pressure. In L-propionylcarnitine-treated pigs, cardiac output remained at 75% of baseline, and systemic vascular resistance decreased from 42 +/- 3 to 38 +/- 4 mmHg.min.l-1. In both groups, energy charge but not the ATP level of the ischemic-reperfused myocardium tended to recover, whereas the creatine phosphate level showed significantly more recovery in saline-treated animals. We conclude that L-propionylcarnitine partially preserved vascular patency in ischemic-reperfused porcine myocardium but had no immediate effect on “myocardial stunning.” Potential markers for long-term recovery were not affected by L-propionylcarnitine.


1995 ◽  
Vol 269 (1) ◽  
pp. H282-H287 ◽  
Author(s):  
D. A. Ogunyemi ◽  
B. J. Koos ◽  
C. P. Arora ◽  
L. C. Castro ◽  
B. A. Mason

The effects of adenosine on atrial natriuretic peptide (ANP) secretion were determined in chronically catheterized fetal sheep (> 0.8 term). Adenosine was infused into the the right jugular vein for 1 h at 8 +/- 0.4 (5 fetuses), 160 +/- 8 (6 fetuses), and 344 +/- 18 micrograms.min-1.kg estimated fetal wt-1. Fetal arterial blood gases and pH were generally unaffected by adenosine, although mean arterial CO2 tension increased transiently by 2-5 Torr and pH fell progressively during the highest rate of infusion. During the intermediate and high infusion rates, fetal hemoglobin concentrations increased by 11-13% and mean fetal heart rate rose by 18% from a control value of approximately 167 beats/min. Mean arterial pressure was not affected during adenosine infusion. Adenosine significantly increased fetal plasma ANP levels, with maximum concentrations 1.80, 2.36, and 2.51 times greater than control means (142-166 pg/ml) for the respective infusion rates of 8, 160, and 344 micrograms.min-1.kg estimated fetal wt-1. In seven fetuses, reducing fetal arterial O2 tension by approximately 9-10 Torr from a control of 23 +/- 1.3 Torr increased plasma ANP concentrations approximately 2.4 times the control mean of 176 pg/min. Adenosine-receptor blockade with 8-(p-sulfophenyl)-theophylline reduced by 50% the maximum hypoxia-induced rise in plasma ANP concentrations. It is concluded that adenosine causes a dose-dependent rise in fetal plasma ANP concentrations and modulates fetal ANP release during hypoxia.


1965 ◽  
Vol 209 (2) ◽  
pp. 397-403 ◽  
Author(s):  
Hermes A. Kontos ◽  
H. Page Mauck ◽  
David W. Richardson ◽  
John L. Patterson

The possibility that mechanisms secondary to the increased ventilation may contribute significantly to the circulatory responses to systemic hypoxia was explored in anesthetized dogs. In 14 spontaneously breathing dogs systemic hypoxia induced by breathing 7.5% oxygen in nitrogen increased cardiac output, heart rate, mean arterial blood pressure, and femoral arterial flow, and decreased systemic and hindlimb vascular resistances. In 14 dogs whose ventilation was kept constant by means of a respirator pump and intravenous decamethonium, systemic hypoxia did not change cardiac output, femoral arterial flow, or limb vascular resistance; it significantly decreased heart rate and significantly increased systemic vascular resistance. In seven spontaneously breathing dogs arterial blood pCO2 was maintained at the resting level during systemic hypoxia. The increase in heart rate was significantly less pronounced but the other circulatory findings were not different from those found during hypocapnic hypoxia. Thus, mechanisms secondary to increased ventilation contribute significantly to the circulatory responses to systemic hypoxia. Hypocapnia accounts partly for the increased heart rate, but not for the other circulatory responses.


Sign in / Sign up

Export Citation Format

Share Document