The adrenocorticotropic hormone and arginine vasopressin responses to hypercapnia in fetal and maternal sheep

1993 ◽  
Vol 264 (2) ◽  
pp. R324-R330 ◽  
Author(s):  
H. G. Chen ◽  
C. E. Wood

Previous studies have demonstrated that fetal adrenocorticotropic hormone (ACTH) and arginine vasopressin (AVP) are increased during periods of acidemia produced by infusion of acid intravenously or by acidemia secondary to hypovolemia. The purpose of this study was to quantify ACTH and AVP responses to hypercapnic acidemia and to test the role of the peripheral chemoreceptors in the control of these responses. Chronically catheterized fetal sheep were subjected to carotid sinus denervation and bilateral vagotomy or were studied intact. At least 5 days after surgery, fetuses were exposed to a 60-min period of normocapnia or hypercapnia, delivered via a polyethylene bag containing 5-8% CO2 in 21% O2 fitted over the head of the pregnant ewe. Hypercapnia significantly increased fetal arterial PCO2 to 55.2 +/- 1.8 and 55.9 +/- 2.2 mmHg and decreased arterial pH to 7.257 +/- 0.011 and 7.281 +/- 0.010 in intact and denervated fetuses, respectively. Fetal mean arterial blood pressure was decreased slightly in the denervated fetuses during hypercapnia. Fetal plasma AVP was increased in both groups equally, and plasma ACTH and cortisol were increased in the denervated fetuses only. Fetal heart rate was increased significantly in intact but not denervated fetuses. We conclude that respiratory acidemia is a mild stimulus to AVP secretion and that this response is not attenuated by peripheral chemodenervation.

1989 ◽  
Vol 257 (2) ◽  
pp. R344-R349 ◽  
Author(s):  
C. E. Wood ◽  
H. G. Chen

Adrenocorticotropic hormone (ACTH), arginine vasopressin (AVP), and renin responses to hemorrhage are highly correlated to the hemorrhage-induced decreases in arterial pH. The present study was designed to test the responses of these three systems to acute fetal acidemia, produced by intravenous infusion of H+. HCl was infused into chronically catheterized fetal sheep at rates of 0.02 (n = 5), 0.10 (n = 6), and 0.50 (n = 5) meq/min. Infusions at rates of 0.10 and 0.50 meq/min significantly decreased fetal arterial pH and increased arterial PCO2. Fetal heart rate and plasma concentrations of ACTH, cortisol, and AVP were significantly increased during infusion of HCl at 0.5 meq/min. Neither fetal plasma renin activity nor fetal arterial blood pressure was significantly altered by any of the infusions. The results of these experiments suggest that fetal ACTH, AVP, and heart rate are stimulated by decreases in arterial pH and/or increases in arterial PCO2. We speculate that these responses are chemoreceptor mediated, although we cannot distinguish the apparent relative roles of peripheral and central chemoreceptors on the basis of the present study.


1991 ◽  
Vol 260 (6) ◽  
pp. R1077-R1081 ◽  
Author(s):  
H. Raff ◽  
C. W. Kane ◽  
C. E. Wood

The purpose of this study was to determine the interaction of hypoxia and hypercapnia in the control of arginine vasopressin (AVP) secretion in fetal sheep and to determine the role of the peripheral arterial chemoreceptors in that response. We measured the plasma AVP response to hypercapnia and/or hypoxia in catheterized intact or sinoaortic-denervated fetal sheep between 123 and 144 days of gestation. Ewes were exposed to the following inspired gases: two successive 30-min periods of normocapnic normoxia, 30 min of normocapnic normoxia followed by 30 min of normocapnic hypoxia, two successive 30-min periods of hypercapnic normoxia, or 30 min of hypercapnic normoxia followed by 30 min of hypercapnic hypoxia (i.e., asphyxia). Hypercapnia per se had no significant effect on fetal plasma AVP. Normocapnic hypoxia per se resulted in a significant increase in fetal plasma AVP. Although hypercapnia resulted in a significant acidemia, the decrease in arterial pH was more marked under hypoxic conditions. Hypercapnia/acidemia augmented the AVP response to hypoxia. Fetal sinoaortic denervation did not significantly attenuate any of the AVP responses. We conclude that hypercapnia augments the fetal AVP response to hypoxia and that the AVP response to neither normocapnic nor hypercapnic hypoxia is dependent on afferent information carried in the carotid sinus or aortic nerves.


1991 ◽  
Vol 70 (4) ◽  
pp. 1796-1809 ◽  
Author(s):  
S. L. Adamson ◽  
I. M. Kuipers ◽  
D. M. Olson

The role of umbilical cord occlusion in the initiation of breathing at birth was investigated by use of 16 unanesthetized fetal sheep near full term. Artificial ventilation with high-frequency oscillation was used to control fetal arterial blood gas tensions. At baseline, PCO2 was maintained at control fetal values and PO2 was elevated to between 25 and 50 Torr. In the first study on six intact and four vagotomized fetuses, arterial PCO2 and PO2 were maintained constant during two 30-min periods of umbilical cord occlusion. Nevertheless, the mean fetal breathing rate increased significantly when the umbilical cord was occluded. In the second study on six intact fetuses, hypercapnia (68 Torr) was imposed by adding CO2 to the ventilation gas. When the umbilical cord was occluded, there was a significantly greater stimulation of breathing (rate, incidence, and amplitude) in response to hypercapnia than in response to hypercapnia alone. During cord occlusion, plasma prostaglandin E2 concentration decreased significantly. Results indicate that cord occlusion stimulates breathing possibly by causing the removal of a placentally produced respiratory inhibitor such as prostaglandin E2 from the circulation.


1994 ◽  
Vol 266 (1) ◽  
pp. R215-R220 ◽  
Author(s):  
B. J. Koos ◽  
B. A. Mason ◽  
M. G. Ervin

The effects of adenosine on plasma arginine vasopressin (AVP) concentrations were determined in chronically catheterized fetal sheep (> 0.8 term). Infusion of adenosine [0.35 +/- 0.01 (SE) mg.min-1.kg-1] into the inferior vena cava of six fetuses caused a transient fall in arterial PO2 (by approximately 3 Torr), a slight reduction in arterial pH, and a 5- to 6-mmHg decrease in diastolic pressure without significantly affecting systolic or mean arterial values. A lower rate of infusion (0.19 +/- 0.01 mg.min-1 x kg-1) in five fetuses had virtually no effect on arterial blood gases, pH, or arterial pressures. Both the low- and high-dose adenosine infusions significantly increased fetal plasma AVP concentrations (1.7 +/- 0.2 to 25 +/- 7 pg/ml and 1.6 +/- 0.1 to 54 +/- 8 pg/ml, respectively). Intravenous infusion of papaverine lowered fetal diastolic and mean arterial pressures by approximately 8 mmHg but had no significant effect on plasma levels of AVP. During an hour of isocapnic hypoxia (arterial PO2 12-13 Torr), fetal plasma AVP levels increased from 1.7 +/- 0.2 to 40 +/- 6 pg/ml. Intra-arterial infusion of the adenosine receptor antagonist 8-(p-sulfophenyl)-theophylline significantly blunted the hypoxia-induced rise in plasma AVP concentrations to a maximum mean level of 11 +/- 6 pg/ml. These results indicate that 1) adenosine causes a dose-dependent increase in plasma AVP concentrations and 2) a hypoxia-induced rise in fetal adenosine levels triggers vasopressin release.


1985 ◽  
Vol 59 (3) ◽  
pp. 798-806 ◽  
Author(s):  
C. Flynn ◽  
H. V. Forster ◽  
L. G. Pan ◽  
G. E. Bisgard

The objective of this study was to determine the role of hilar nerve (lung vagal) afferents in the hyperpnea of exercise. Ten ponies were studied before and 2–4 wk and 3–12 mo after sectioning only the hilar branches of the vagus nerves (HND). After HND, lung volume feedback to the medullary centers was attenuated as indicated in the anesthetized state by 1) attenuation or absence of the Hering-Breuer inflation reflex (P less than 0.01) and 2) attenuation of the lengthened inspiratory time (TI) when the airway was occluded at end expiration (P less than 0.01). Moreover, after HND in the awake state, there was an increase in the ratio of TI to total cycle time (P less than 0.01). These changes verify a compromise in lung innervation comparable to cervical vagotomy. Resting arterial PCO2, PO2, and pH were not altered following HND (P greater than 0.10). Moreover, at three levels of mild and moderate treadmill exercise, no difference in either the temporal pattern or the absolute levels of arterial blood gases and arterial pH was found between pre- and post-HND studies (P greater than 0.10). In addition, minute ventilation (VE) at rest and during exercise was not altered by HND (P greater than 0.10). However, 2–4 wk after HND the increase in breathing frequency (f) during exercise was less, whereas the increase in tidal volume during exercise was greater than pre-HND (P less than 0.05). The reduced f was due to an increase in TI with no change in expiratory time. We conclude that lung afferents via the hilar nerves influence the pattern of breathing at rest and during exercise in ponies.


1989 ◽  
Vol 256 (5) ◽  
pp. R1011-R1018 ◽  
Author(s):  
R. Perez ◽  
M. Espinoza ◽  
R. Riquelme ◽  
J. T. Parer ◽  
A. J. Llanos

Acute hypoxemia results in hypertension, bradycardia, and cardiac output redistribution in fetal sheep. The blood flow redistribution is produced by differential changes in vascular resistance of various fetal organs. alpha-Adrenergic activity is one of the few vasoconstrictor mechanisms thus far identified in the hypoxemic fetal sheep. Arginine vasopressin (AVP) is a potent vasoconstrictor in adults. Since AVP administration to the normoxic fetus mimics some of the fetal cardiovascular responses to hypoxemia and fetal plasma AVP levels increase with hypoxemia, we examined the hypothesis that AVP modifies the fetal cardiovascular response to hypoxemia by changing the vascular resistance of some fetal vascular beds. To test this we determined fetal systemic arterial pressure and fetal cardiac output and its distribution during hypoxemia with and without the V1 AVP antagonist d(CH2)5-Tyr(Me)AVP. Fourteen fetal sheep (0.79-0.90 of gestation) were chronically catheterized. Five days after surgery fetal hypoxemia was induced by introducing a mixture of 95% N2-5% CO2 (10-20 l/min) into a maternal tracheal catheter. The hypoxemia was maintained for 40 min. Fetal heart rate, systemic arterial blood pressure, and combined ventricular output and its distribution (radiolabeled microspheres) were measured before hypoxemia, at 20 min of hypoxemia alone, and at 20 min of hypoxemia plus either AVP antagonist (n = 5) or NaCl 0.9% (n = 5, controls). Fetal hypertension and bradycardia were partially reversed after the AVP antagonist administration during hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 59 (2) ◽  
pp. 575-579 ◽  
Author(s):  
D. T. Murai ◽  
C. C. Lee ◽  
L. D. Wallen ◽  
J. A. Kitterman

The role of the peripheral chemoreceptors in the control of fetal breathing movements has not been fully defined. To determine whether denervation of the peripheral chemoreceptors affects fetal breathing movements, we studied 14 chronically catheterized fetal sheep from 120 to 138 days of gestation. In seven fetuses the chemoreceptors were denervated by bilateral section of the vagus and carotid sinus nerves; in seven others, sham operations were performed. We compared several variables during two study periods: 0–5 and 6–13 days after operation. In the denervated fetuses there were significant decreases in the incidence and amplitude of fetal breathing movements during both study periods. There were no differences between the two groups in incidence of low-voltage electrocortical activity, arterial pH and blood gas tensions, fetal heart rate, mean arterial blood pressure, or duration of survival after operation or birth weight. We conclude that denervation of the peripheral chemoreceptors decreases fetal breathing movements. These results indicate that the peripheral chemoreceptors are active during fetal life and participate in the control of fetal breathing movements.


1965 ◽  
Vol 209 (6) ◽  
pp. 1081-1088 ◽  
Author(s):  
G. Ascanio ◽  
F. Barrera ◽  
E. V. Lautsch ◽  
M. J. Oppenheimer

Intracoronary administration of hexachlorotetrafluorobutane (Hexa) into non-thoracotomized dogs produced a statistically significant decrease in left ventricular systolic pressure (LVSP), mean femoral arterial blood pressure (MFAP), first derivative of left ventricular pressure pulse (dP/d t), total peripheral resistance (TPR), and cardiac output (C.O.) lasting up to 1 hr after injection. Femoral vascular resistance decreased during the first 3 min after production of necrobiosis. Fifty percent of the dogs died of ventricular fibrillation (VF) after Hexa infarction. Prereserpinized dogs did not show significant changes in the parameters which were significantly changed in normal dogs after Hexa necrobiosis except in the case of VF which was almost absent in this group. Bilateral vagotomy prior to Hexa administration prevented most hemodynamic changes after necrobiosis whereas atropine did not. Bilateral vagotomy and atropine 1 hr after necrobiosis increased MFAP, dP/d t, LVSP, C.O., and TPR. Apparently excitatory efferent sympathetic activity on heart and femoral arterial vessels is reflexly inhibited by the effects of intracoronary injection of Hexa. The afferent pathway is via the vagus nerve.


1995 ◽  
Vol 269 (1) ◽  
pp. H282-H287 ◽  
Author(s):  
D. A. Ogunyemi ◽  
B. J. Koos ◽  
C. P. Arora ◽  
L. C. Castro ◽  
B. A. Mason

The effects of adenosine on atrial natriuretic peptide (ANP) secretion were determined in chronically catheterized fetal sheep (> 0.8 term). Adenosine was infused into the the right jugular vein for 1 h at 8 +/- 0.4 (5 fetuses), 160 +/- 8 (6 fetuses), and 344 +/- 18 micrograms.min-1.kg estimated fetal wt-1. Fetal arterial blood gases and pH were generally unaffected by adenosine, although mean arterial CO2 tension increased transiently by 2-5 Torr and pH fell progressively during the highest rate of infusion. During the intermediate and high infusion rates, fetal hemoglobin concentrations increased by 11-13% and mean fetal heart rate rose by 18% from a control value of approximately 167 beats/min. Mean arterial pressure was not affected during adenosine infusion. Adenosine significantly increased fetal plasma ANP levels, with maximum concentrations 1.80, 2.36, and 2.51 times greater than control means (142-166 pg/ml) for the respective infusion rates of 8, 160, and 344 micrograms.min-1.kg estimated fetal wt-1. In seven fetuses, reducing fetal arterial O2 tension by approximately 9-10 Torr from a control of 23 +/- 1.3 Torr increased plasma ANP concentrations approximately 2.4 times the control mean of 176 pg/min. Adenosine-receptor blockade with 8-(p-sulfophenyl)-theophylline reduced by 50% the maximum hypoxia-induced rise in plasma ANP concentrations. It is concluded that adenosine causes a dose-dependent rise in fetal plasma ANP concentrations and modulates fetal ANP release during hypoxia.


1995 ◽  
Vol 269 (6) ◽  
pp. E1076-E1082 ◽  
Author(s):  
T. J. Zehnder ◽  
N. K. Valego ◽  
J. Schwartz ◽  
A. White ◽  
J. C. Rose

The purpose of this study was to determine the effects of corticotropin-releasing factor (CRF) or arginine vasopressin (AVP) on the secretion of bioactive adrenocorticotropic hormone (bACTH) and immunoreactive ACTH (iACTH), the latter being measured by radioimmunoassay and separate two-site immunoradiometric assays for ACTH-(1-39) and ACTH precursors. Experiments were performed on chronically catheterized fetal sheep at 0.70 (n = 9) and 0.90 (n = 8) gestation. Each fetus received a 15-min infusion of CRF, AVP, or saline on 3 consecutive days. Blood was obtained before and 15 and 60 min after the infusion began. CRF significantly increased iACTH at 15 (younger group) and 60 min (both groups). CRF significantly increased bACTH and the bACTH-to-iACTH ratio (bACTH/iACTH) in both groups at 15 and 60 min. AVP significantly increased iACTH, bACTH, and bACTH/iACTH in both groups at 15 min. In two subgroups (n = 4/subgroup), CRF significantly increased ACTH-(1-39) and ACTH precursors at 15 and 60 min. CRF increased the ratio of ACTH-(1-39) to ACTH precursors [ACTH-(1-39)/ACTH precursors] at 15 (younger group) and 60 min (both groups). AVP increased ACTH-(1-39), ACTH precursors, and ACTH-(1-39)/ACTH precursors in both groups at 15 min. These findings show that both CRF and AVP can stimulate the secretion of bACTH, ACTH-(1-39), and ACTH precursors at 0.70 and 0.90 gestation. The proportional increments in bACTH/iACTH and ACTH-(1-39)/ACTH precursors suggest that CRF and AVP evoke selective increases in bACTH and ACTH-(1-39).


Sign in / Sign up

Export Citation Format

Share Document