Role of aldosterone in angiotensin II-induced hypertension in rats

1990 ◽  
Vol 259 (1) ◽  
pp. R102-R109 ◽  
Author(s):  
N. L. Kanagy ◽  
C. M. Pawloski ◽  
G. D. Fink

Initial experiments demonstrated that a 1-h infusion of 10 ng/min angiotensin II (ANG II) into rats causes an increase in plasma aldosterone concentration (PAC) and that chronic administration of aldosterone alone to rats on increased sodium intake causes hypertension. We therefore hypothesized that a portion of the hypertensive effect of chronic ANG II infusion is accompanied by and dependent on chronic release of aldosterone. To test this hypothesis, 10 ng/min ANG II or saline was infused into chronically instrumented rats housed in metabolism cages. Fifteen rats were maintained on a high sodium intake (6 meq/day); 10 received ANG II and 5 received saline. Ten other rats were maintained on a normal sodium intake (2 meq/day); five received ANG II and five received saline. PAC was measured using a commercial radio-immunoassay kit. Mean arterial pressure (MAP), heart rate, water intake, urine output, and urine electrolytes were measured daily during 3-day control, 16- or 28-day infusion, and 4-day recovery periods. Compared with saline-infused rats, ANG II-infused rats on high sodium intake had normal values for all variables except MAP, which was significantly elevated during ANG II infusion. In the normal sodium group, none of the variables were consistently different during ANG II infusion compared with control. These results suggest that ANG II-induced hypertension in the rat is sodium dependent, that plasma aldosterone does not play a major role in ANG II-induced hypertension in the rat, and that a small chronic increase in circulating ANG II does not necessarily lead to a detectable sustained increase in PAC.

2018 ◽  
Vol 314 (5) ◽  
pp. F873-F878 ◽  
Author(s):  
Tsjitske J. Toering ◽  
Christina M. Gant ◽  
Folkert W. Visser ◽  
Anne Marijn van der Graaf ◽  
Gozewijn D. Laverman ◽  
...  

Several studies reported sex differences in aldosterone. It is unknown whether these differences are associated with differences in volume regulation. Therefore we studied both aldosterone and extracellular volume in men and women on different sodium intakes. In healthy normotensive men ( n = 18) and premenopausal women ( n = 18) we investigated plasma aldosterone, blood pressure, and extracellular volume (125I-iothalamate), during both low (target intake 50 mmol Na+/day) and high sodium intake (target intake 200 mmol Na+/day) in a crossover setup. Furthermore, we studied the adrenal response to angiotensin II infusion (0.3, 1.0, and 3.0 ng·kg−1·min−1 for 1 h) on both sodium intakes. Men had a significantly higher plasma aldosterone, extracellular volume, and systolic blood pressure than women during high sodium intake ( P < 0.05). During low sodium intake, extracellular volume and blood pressure were higher in men as well ( P < 0.05), whereas the difference in plasma aldosterone was no longer significant ( P = 0.252). The adrenal response to exogenous angiotensin II was significantly lower in men than in women on both sodium intakes. Constitutive sex differences in the regulation of aldosterone, characterized by a higher aldosterone and a lower adrenal response to exogenous angiotensin II infusion in men, are associated with a higher extracellular volume and blood pressure in men. These findings suggest that sex differences in the regulation of aldosterone contribute to differences in volume regulation between men and women.


2001 ◽  
Vol 281 (1) ◽  
pp. R150-R154 ◽  
Author(s):  
Jennifer R. Ballew ◽  
Gregory D. Fink

The objectives were to determine if ANG II-induced hypertension is maintained by activation of endothelin type A (ETA) receptors by endogenous ET-1 and if this effect is influenced by salt intake. Male rats were maintained on high sodium intake (HS; 6 meq/day) or on normal sodium intake (NS; 2 meq/day). Hypertension was produced by intravenous infusion of ANG II (5 ng/min) for 15 days. Five-day oral dosing with the selective ETA-receptor antagonist ABT-627 (∼2 mg · kg−1 · day−1) reduced mean arterial pressure (MAP) to baseline levels in rats on HS receiving ANG II infusion, but it did not affect MAP in normotensive HS controls. In rats on NS, ABT-627 only transiently decreased MAP in rats receiving ANG II and slightly reduced MAP in normotensive controls. ABT-627 produced mild retention of sodium and water in NS rats receiving ANG II, but not in any other group. These results indicate that ET-1 plays a role in ANG II-induced hypertension via activation of ETAreceptors and that this role is more prominent in rats on HS.


1988 ◽  
Vol 75 (2) ◽  
pp. 191-196 ◽  
Author(s):  
E. A. Messenger ◽  
C. Stonier ◽  
G. M. Aber

1. Angiotensin II (ANG II) binding and the physiological response to exogenous ANG II have been studied in isolated glomerular preparations from normotensive (NTR) and spontaneously hypertensive (SHR) rats. 2. The binding of 125I-labelled ANG II by glomeruli from SHR was significantly greater than that by glomeruli from NTR, whereas the binding affinity constant (Ka) showed that the SHR ANG II glomerular receptor had a lower affinity for the hormone than the NTR glomerular receptor. 3. Glomeruli from SHR were significantly less responsive to exogenous ANG II than those from NTR. 4. Sodium loading resulted in a significant increase in ANG II binding by glomeruli from NTR, whereas a decrease in binding occurred in glomeruli from SHR. 5. Although a high sodium intake caused a reduction in the response of glomeruli from both NTR and SHR to exogenous ANG II, these changes were not statistically significant. In NTR this was associated with a decrease in the concentration of agonist required to cause half-maximal response (EC50), whereas an increase in EC50 was shown by glomeruli from SHR.


1985 ◽  
Vol 249 (2) ◽  
pp. H321-H327 ◽  
Author(s):  
C. A. Bruner ◽  
J. M. Weaver ◽  
G. D. Fink

Experiments were performed to characterize the hypertension produced by chronic intracerebroventricular (ICV) infusion of angiotensin II (ANG II) in conscious rats. Infusion of ANG II into a lateral cerebral ventricle for 5 days (1 or 6 micrograms/h) produced dose-dependent increases in mean arterial pressure associated with increased water intake. No consistent changes in heart rate, urinary electrolyte excretion, or water balance were observed. Similarly, no alterations in plasma sodium and potassium concentration, plasma osmolality, or plasma ANG II levels were seen during ICV ANG II infusion. Controlling fluid intake at 40 ml/day did not alter the development of hypertension in this model. Hypertension was found to be sodium dependent, with high sodium intake augmenting the increase in arterial pressure in response to chronic ICV ANG II. Although plasma aldosterone concentrations were increased in some situations during ICV ANG II infusion, adrenalectomy failed to alter the course of hypertension. This study demonstrates that chronic selective stimulation of brain ANG II receptors by means of continuous ICV infusion of ANG II produces sodium-sensitive increases in arterial pressure associated with, but not dependent on, increased fluid intake. This form of hypertension cannot be attributed to sodium and water retention, elevations in plasma aldosterone, or leak of significant amounts of ANG II from cerebrospinal fluid into the peripheral circulation.


1992 ◽  
Vol 262 (1) ◽  
pp. R61-R71 ◽  
Author(s):  
J. E. Hall ◽  
H. L. Mizelle ◽  
M. W. Brands ◽  
D. A. Hildebrandt

In normal subjects, high sodium intake causes little change in mean arterial pressure (MAP). However, MAP is sodium sensitive after reduction of kidney mass. The present study examined the role of increased renal artery pressure and decreased angiotensin II (ANG II) formation in maintaining sodium balance during high sodium intake in dogs with reduced kidney mass. In seven dogs with pressure natriuresis intact, increasing sodium intake from 36 to 466 meq/day for 7 days raised MAP from 91 +/- 2 to 106 +/- 2 mmHg. Sodium excretion increased promptly and cumulative sodium balance increased by only 80 +/- 26 meq after 7 days of high sodium intake. When renal perfusion pressure was servo-controlled to prevent pressure natriuresis, comparable increases in sodium intake raised MAP from 88 +/- 2 to 128 +/- 4 mmHg after 7 days. Sodium excretion rose to match intake, but cumulative sodium balance increased by 226 +/- 34 meq after 7 days. In dogs in which ANG II levels were held constant by converting enzyme inhibition and constant ANG II infusion (2 ng.kg-1.min-1 iv), raising sodium intake for 7 days elevated MAP from 126 +/- 2 to 146 +/- 4 mmHg after 7 days while increasing cumulative sodium balance by 212 +/- 29 meq. When renal perfusion pressure was servo-controlled and ANG II levels held constant, raising sodium intake elevated MAP from 125 +/- 3 to 166 +/- 11 mmHg and increased cumulative sodium balance by 399 +/- 128 meq. These data indicate that pressure natriuresis and decreased ANG II formation are important in minimizing sodium retention and hypertension during high sodium intake. However, other mechanisms can increase sodium excretion independent of pressure natriuresis and suppression of ANG II during salt-induced hypertension.


2012 ◽  
Vol 303 (3) ◽  
pp. F412-F419 ◽  
Author(s):  
Preethi Samuel ◽  
Quaisar Ali ◽  
Rifat Sabuhi ◽  
Yonnie Wu ◽  
Tahir Hussain

High sodium intake is known to regulate the renal renin-angiotensin system (RAS) and is a risk factor for the pathogenesis of obesity-related hypertension. The complex nature of the RAS reveals that its various components may have opposing effects on natriuresis and blood pressure regulation. We hypothesized that high sodium intake differentially regulates and shifts a balance between opposing components of the renal RAS, namely, angiotensin-converting enzyme (ACE)-ANG II-type 1 ANG II receptor (AT1R) vs. AT2-ACE2-angiotensinogen (Ang) (1–7)-Mas receptor (MasR), in obesity. In the present study, we evaluated protein and/or mRNA expression of angiotensinogen, renin, AT1A/BR, ACE, AT2R, ACE2, and MasR in the kidney cortex following 2 wk of a 8% high-sodium (HS) diet in lean and obese Zucker rats. The expression data showed that the relative expression pattern of ACE and AT1BR increased, renin decreased, and ACE2, AT2R, and MasR remained unaltered in HS-fed lean rats. On the other hand, HS intake in obese rats caused an increase in the cortical expression of ACE, a decrease in ACE2, AT2R, and MasR, and no changes in renin and AT1R. The cortical levels of ANG II increased by threefold in obese rats on HS compared with obese rats on normal salt (NS), which was not different than in lean rats. The HS intake elevated mean arterial pressure in obese rats (27 mmHg) more than in lean rats (16 mmHg). This study suggests that HS intake causes a pronounced increase in ANG II levels and a reduction in the expression of the ACE2-AT2R-MasR axis in the kidney cortex of obese rats. We conclude that such changes may lead to the potentially unopposed function of AT1R, with its various cellular and physiological roles, including the contribution to the pathogenesis of obesity-related hypertension.


2019 ◽  
Vol 317 (2) ◽  
pp. F254-F263
Author(s):  
Anne D. Thuesen ◽  
Stine H. Finsen ◽  
Louise L. Rasmussen ◽  
Ditte C. Andersen ◽  
Boye L. Jensen ◽  
...  

T-type Ca2+ channel Cav3.1 promotes microvessel contraction ex vivo. It was hypothesized that in vivo, functional deletion of Cav3.1, but not Cav3.2, protects mice against angiotensin II (ANG II)-induced hypertension. Mean arterial blood pressure (MAP) and heart rate were measured continuously with chronically indwelling catheters during infusion of ANG II (30 ng·kg−1·min−1, 7 days) in wild-type (WT), Cav3.1−/−, and Cav3.2−/− mice. Plasma aldosterone and renin concentrations were measured by radioimmunoassays. In a separate series, WT mice were infused with ANG II (100 ng·kg−1·min−1) with and without the mineralocorticoid receptor blocker canrenoate. Cav3.1−/− and Cav3.2−/− mice exhibited no baseline difference in MAP compared with WT mice, but day-night variation was blunted in both Cav3.1 and Cav3.2−/− mice. ANG II increased significantly MAP in WT, Cav3.1−/−, and Cav3.2−/− mice with no differences between genotypes. Heart rate was significantly lower in Cav3.1−/− and Cav3.2−/− mice compared with control mice. After ANG II infusion, plasma aldosterone concentration was significantly lower in Cav3.1−/− compared with Cav3.2−/− mice. In response to ANG II, fibrosis was observed in heart sections from both WT and Cav3.1−/− mice and while cardiac atrial natriuretic peptide mRNA was similar, the brain natriuretic peptide mRNA increase was mitigated in Cav3.1−/− mice ANG II at 100 ng/kg yielded elevated pressure and an increased heart weight-to-body weight ratio in WT mice. Cardiac hypertrophy, but not hypertension, was prevented by the mineralocorticoid receptor blocker canrenoate. In conclusion, T-type channels Cav3.1and Cav3.2 do not contribute to baseline blood pressure levels and ANG II-induced hypertension. Cav3.1, but not Cav3.2, contributes to aldosterone secretion. Aldosterone promotes cardiac hypertrophy during hypertension.


1986 ◽  
Vol 251 (1) ◽  
pp. F34-F39 ◽  
Author(s):  
M. S. Paller ◽  
T. H. Hostetter

The effect of dietary protein on the renin-angiotensin system was studied in rats. Rats were fed isocaloric, 50% (high protein, HP), or 6% (low protein, LP) protein diets with identical electrolyte content for 10 days. Food intake and electrolyte excretion were equivalent on the two diets. Plasma renin activity (PRA) was higher in HP (10.0 +/- 2.5 vs. 3.5 +/- 0.5 ng ANG I . ml-1 . h-1, P less than 0.02) as was plasma aldosterone. However, in conscious rats mean arterial pressure (MAP) was not different between groups. The pressor response to graded doses of angiotensin II (ANG II) was diminished by 30-60% with HP (all doses, P less than 0.05). ANG II binding by mesenteric artery smooth muscle particles did not differ between HP and LP. Chronic administration of captopril did not normalize the pressor response in HP. Urinary prostaglandin (PG) E and 6-keto-PGF1 alpha excretion was markedly increased by the HP diet. Acute inhibition of prostaglandin synthesis with meclofenamate restored the pressor response to ANG II in HP to that in LP. In summary, a HP diet increased PRA, plasma aldosterone, urinary PGE, and 6-keto-PGF1 alpha and decreased pressor responsiveness to ANG II. Resistance to ANG II was not reversed by chronic converting enzyme inhibition but was abolished by inhibition of prostaglandin synthesis.


Sign in / Sign up

Export Citation Format

Share Document