Unique electrophysiological effects of dinitrophenol in Malpighian tubules

1992 ◽  
Vol 263 (3) ◽  
pp. R609-R614 ◽  
Author(s):  
T. L. Pannabecker ◽  
D. J. Aneshansley ◽  
K. W. Beyenbach

In the course of electrophysiological studies of Malpighian tubules of the mosquito Aedes aegypti, we have found unusual effects of 2,4-dinitrophenol (DNP) that offer new insights into the electrogenic and conductive properties of the tubule. DNP (10(-4)M) depolarized the basolateral membrane voltage from -58.0 to -3.3 mV, and it depolarized the apical membrane voltage from 110.6 to 8.9 mV. In parallel the transepithelial electrical resistance increased from 11.4 to 16.8 k omega.cm, and the fractional resistance of the apical membrane increased from 0.32 to 0.57. On the assumption that measures of transepithelial resistance in the presence of DNP approach the shunt resistance, the experimental results indicate the following characteristics for the equivalent circuit of the tubule: 1) a shunt resistance that is approximately one-half the transcellular resistance, 2) low and high electromotive forces, respectively, at the basolateral and apical membranes of principal cells, 3) an electrogenic pump at the apical membrane, and 4) a basolateral membrane voltage that is due mostly to the voltage developed by current flow across the basolateral membrane resistance.

1992 ◽  
Vol 99 (2) ◽  
pp. 241-262 ◽  
Author(s):  
G A Altenberg ◽  
J S Stoddard ◽  
L Reuss

In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.


2000 ◽  
Vol 279 (4) ◽  
pp. F747-F754 ◽  
Author(s):  
R. Masia ◽  
D. Aneshansley ◽  
W. Nagel ◽  
R. J. Nachman ◽  
K. W. Beyenbach

Principal cells of the Malpighian tubule of the yellow fever mosquito were studied with the methods of two-electrode voltage clamp (TEVC). Intracellular voltage ( V pc) was −86.7 mV, and input resistance ( R pc) was 388.5 kΩ ( n = 49 cells). In six cells, Ba2+ (15 mM) had negligible effects on V pc, but it increased R pc from 325.3 to 684.5 kΩ ( P< 0.001). In the presence of Ba2+, leucokinin-VIII (1 μM) increased V pc to −101.8 mV ( P < 0.001) and reduced R pc to 340.2 kΩ ( P < 0.002). Circuit analysis yields the following: basolateral membrane resistance, 652.0 kΩ; apical membrane resistance, 340.2 kΩ; shunt resistance ( R sh), 344.3 kΩ; transcellular resistance, 992.2 kΩ. The fractional resistance of the apical membrane (0.35) and the ratio of transcellular resistance and R sh (3.53) agree closely with values obtained by cable analysis in isolated perfused tubules and confirm the usefulness of TEVC methods in single principal cells of the intact Malpighian tubule. Dinitrophenol (0.1 mM) reversibly depolarized V pc from −94.3 to −10.7 mV ( P< 0.001) and reversibly increased R pc from 412 to 2,879 kΩ ( P < 0.001), effects that were duplicated by cyanide (0.3 mM). Significant effects of metabolic inhibition on voltage and resistance suggest a role of ATP in electrogenesis and the maintenance of conductive transport pathways.


1991 ◽  
Vol 261 (3) ◽  
pp. C521-C529 ◽  
Author(s):  
J. L. Hegarty ◽  
B. Zhang ◽  
T. L. Pannabecker ◽  
D. H. Petzel ◽  
M. D. Baustian ◽  
...  

The effects of dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) and bumetanide (both 10(-4) M) on transepithelial Na+, K+, Cl-, and fluid secretion and on tubule electrophysiology were studied in isolated Malpighian tubules of the yellow fever mosquito Aedes aegypti. Peritubular DBcAMP significantly increased Na+, Cl-, and fluid secretion but decreased K+ secretion. In DBcAMP-stimulated tubules, bumetanide caused Na+, Cl-, and fluid secretion to return to pre-cAMP control rates and K+ secretion to decrease further. Peritubular bumetanide significantly increased Na+ secretion and decreased K+ secretion so that Cl- and fluid secretion did not change. In bumetanide-treated tubules, the secretagogue effects of DBcAMP are blocked. In isolated Malpighian tubules perfused with symmetrical Ringer solution, DBcAMP significantly hyperpolarized the transepithelial voltage (VT) and depolarized the basolateral membrane voltage (Vbl) with no effect on apical membrane voltage (Va). Total transepithelial resistance (RT) and the fractional resistance of the basolateral membrane (fRbl) significantly decreased. Bumetanide also hyperpolarized VT and depolarized Vbl, however without significantly affecting RT and fRbl. Together these results suggest that, in addition to stimulating electroconductive transport, DBcAMP also activates a nonconductive bumetanide-sensitive transport system in Aedes Malpighian tubules.


1991 ◽  
Vol 260 (3) ◽  
pp. F311-F316 ◽  
Author(s):  
K. Yoshitomi ◽  
M. Imai

The upper portion of the descending limb of long-looped nephron (LDLu) of the hamster is characterized by high water and ion permeabilities. Although the paracellular route is considered to be the major pathway representing cation permselectivity of this segment, ion transport mechanisms through the transcellular pathway are unknown. To study this issue; we applied cable analysis and conventional microelectrode technique to the hamster LDLu perfused in vitro. The transmural voltage (VT) was not different from zero, and transmural resistance (RT) was very low, 18.3 +/- 2.0 omega.cm2 (n = 12). The basolateral membrane voltage was -80 +/- 2 mV (n = 55), and fractional apical membrane resistance was 0.92 +/- 0.23 (n = 5). Ouabain (0.1 mM) in the bath decreased basolateral membrane voltage (VB) by 23 +/- 3 mV (n = 6, P less than 0.001). Increase in K+ concentration in bath and in lumen from 5 to 50 mM decreased VB by 39 +/- 2 (n = 7, P less than 0.01) and apical membrane voltage (VA) by 10 +/- 1 mV (n = 7, P less than 0.001), respectively. Addition of 2 mM Ba2+ to bath and to lumen decreased VB by -47 +/- 2 (n = 11, P less than 0.001) and decreased VA by 8 +/- 1 mV, respectively. Reduction of HCO3- in bath from 25 to 2.5 mM decreased VB by 4 +/- 1 mV (n = 7, P less than 0.005). Reduction of bath Cl- did not cause any rapid deflection of VB. No appreciable Na+ conductance was detected in the apical membrane.(ABSTRACT TRUNCATED AT 250 WORDS)


1982 ◽  
Vol 80 (5) ◽  
pp. 733-751 ◽  
Author(s):  
C W Davis ◽  
A L Finn

In toad urinary bladder epithelium, inhibition of Na transport with amiloride causes a decrease in the apical (Vmc) and basolateral (Vcs) membrane potentials. In addition to increasing apical membrane resistance (Ra), amiloride also causes an increase in basolateral membrane resistance (Rb), with a time course such that Ra/Rb does not change for 1-2 min. At longer times after amiloride (3-4 min), Ra/Rb rises from its control values to its amiloride steady state values through a secondary decrease in Rb. Analysis of an equivalent electrical circuit of the epithelium shows that the depolarization of Vcs is due to a decrease in basolateral electromotive force (Vb). To see of the changes in Vcs and Rb are correlated with a decrease in Na transport, external current (Ie) was used to clamp Vmc to zero, and the effects of amiloride on the portion of Ie that takes the transcellular pathway were determined. In these studies, Vcs also depolarized, which suggests that the decrease in Vb was due to a decrease in the current output of a rheogenic Na pump. Thus, the basolateral membrane does not behave like an ohmic resistor. In contrast, when transport is inhibited during basolateral membrane voltage clamping, the apical membrane voltage changes are those predicted for a simple, passive (i.e., ohmic) element.


1986 ◽  
Vol 251 (3) ◽  
pp. F490-F498 ◽  
Author(s):  
E. Bello-Reuss ◽  
M. R. Weber

Primary confluent monolayers were grown from proximal tubule fragments of rabbit kidneys. The fragments were obtained by gradient centrifugation and seeded on an ad hoc dish whose bottom was a permeable and transparent collagen membrane. The culture medium was a mixture of 50% Ham's F-12 and 50% Dulbecco's modified Eagle's medium supplemented with insulin, transferrin, ethanolamine, sodium selenite, and amino acids. The monolayers were studied at 6-14 days after seeding. Transmission electron microscopy revealed cuboidal cells 8.5-10.5 microns high, with a 1.5 to 2.5-microns apical brush border, abundant mitochondria, vacuoles, lysosomes, and irregular basal interdigitating processes. Cyclic AMP synthesis was stimulated by parathyroid hormone and was insensitive to vasopressin and isoproterenol. Electrophysiological studies performed with the same physiological salt solution on both sides revealed a transepithelial voltage of -2.6 +/- 0.6 mV (n = 10) and a basolateral membrane voltage of -51.0 +/- 4.5 mV (n = 13), both referred to the basal solution. The transepithelial electrical resistance was 7 +/- 2 omega X cm2. The apical membrane depolarized on addition of glucose to the apical side and hyperpolarized on removal of glucose. Changes in apical membrane voltage on addition of varying glucose concentrations (at [Na] = 135 mM, 37 degrees C) demonstrate the presence of a glucose transport system with an apparent Km of 3.54 +/- 0.54 and a Vmax of 7.2 +/- 0.4 mV. Thus this preparation exhibits morphological and electrophysiological characteristics of proximal tubule cells; these studies demonstrate the feasibility of the use of intracellular microelectrode techniques to study the transport properties of cultured epithelia.


1990 ◽  
Vol 258 (2) ◽  
pp. R409-R417 ◽  
Author(s):  
S. C. Hebert ◽  
P. A. Friedman

Diluting segments from the bundle zone of the dogfish shark kidney were perfused in vitro and the electrophysiological characteristics of this segment investigated using conventional microelectrodes and cable analysis. In 21 tubules perfused with symmetrical Ringer solutions the average transepithelial voltage (Vte), transepithelial conductance (Gte), and equivalent short circuit current (Isc) were 8.7 +/- 0.6 mV, 91.3 +/- 10.2 mS/cm2, and 641 +/- 48 microA/cm2, respectively. Microelectrode impalements in 52 cells yielded values for the basolateral membrane voltage (Vb) and an estimated apical membrane fractional resistance (fRa) of -57.5 +/- 1.3 mV and 0.896 +/- 0.008, respectively. All of these parameters were distributed in a Gaussian manner. Liminal furosemide (10(-4) M) abolished Isc, hyperpolarized apical membrane voltage (Va) and Vb, increased Gte, and reduced fRa. The apical membrane was predominantly conductive to K+: increasing luminal K+ from 5 to 49.7 mM resulted in an apical depolarization of 41.2 mV and a fall in fRa and luminal Ba2+ (1 mM) depolarized Va by 14.3 mV and increased fRa. The apical transference number for K+ was 0.74 +/- 0.07. The cellular and paracellular resistances were estimated from the effects of luminal Ba2+ on fRa and Gte. The cell conductance represented approximately 45% of Gte, with the primary resistance barrier located at the apical membrane: apical membrane resistance was 59.7 +/- 16.0 and basolateral membrane resistance was 5.9 +/- 2.3 omega.cm2. From these resistance values together with the passive permeability (PNa/PCl) of 2.5 determined previously, the ratio of net Cl- absorption to net transcellular Na+ absorption was determined to be 2.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 92 (3) ◽  
pp. 281-306 ◽  
Author(s):  
D Chang ◽  
D C Dawson

Sheets of isolated turtle colon were exposed to digitonin on the mucosal side to chemically remove the apical membrane as a permeability barrier. Increases in the mucosal uptake of 86Rb, [3H]mannitol, and 45Ca-EGTA, and the appearance of the cytosolic marker enzyme lactate dehydrogenase in the mucosal bath confirmed the permeabilizing effect of the detergent. Basolateral K+ and Cl- currents were generated by imposing transmural ion gradients, and cytosolic free Ca2+ was manipulated by means of a Ca2+-EGTA buffer system in the mucosal bathing solution. Raising the cytosolic free Ca2+ concentration from the nanomolar to the micromolar range activated basolateral conductances for K+ and Cl-. Differences in ion selectivity, blocker specificity, calcium activation kinetics, and divalent cation activation selectivity indicated that the Ca2+-induced increases in the K+ and Cl- conductances were due to separate populations of channels. The results are consistent with the notion that the apical membranes of turtle colon epithelial cells can be functionally removed under conditions that preserve some of the conductive properties of the basolateral membrane, specifically Ca2+-activated conductive pathways for K+ and Cl-. This permeabilized preparation should offer a means for the identification of macroscopic currents that are due to presumed Ca2+-activated channels, and may also provide a model system for the functional reconstitution of channel regulatory mechanisms.


1993 ◽  
Vol 264 (4) ◽  
pp. F670-F677 ◽  
Author(s):  
D. H. Warden ◽  
J. B. Stokes

The rabbit cortical collecting duct absorbs Na+ by a transport system comprised of an apical membrane Na+ channel and a basolateral membrane Na(+)-K(+)-adenosinetriphosphatase. The rate of Na+ absorption across this epithelium is acutely inhibited by several hormones and autacoids including epidermal growth factor (EGF) and prostaglandin E2 (PGE2). We used electrophysiological analysis to determine which Na+ transport mechanism is primarily regulated in response to EGF and PGE2. We used concentrations of EGF and PGE2 that inhibited Na+ absorption to a comparable degree. We assessed the effects of these agents on Na+ transport primarily by the calculated equivalent current; the validity of this indicator was verified using simultaneous tracer flux measurements. EGF and PGE2 had different effects on the intracellular electrophysiological parameters. EGF (in the presence of a cyclooxygenase inhibitor) hyperpolarized the apical membrane voltage in a manner analogous to the Na(+)-channel blocker amiloride, reduced the transepithelial conductance, and increased the fractional resistance of the apical membrane. In comparison, PGE2 depolarized the apical membrane voltage in a manner analogous to the Na(+)-K+ pump inhibitor ouabain, and caused no significant changes in transepithelial conductance or apical membrane conductance. The finding that EGF hyperpolarized the apical membrane indicates that this agent attenuates Na+ absorption by reducing apical Na+ entry due to a decrease in the magnitude of the apical membrane Na+ conductance. In contrast, the electrophysiological changes produced by PGE2 indicate primary inhibition of the basolateral Na(+)-K+ pump following PGE2 treatment.


1993 ◽  
Vol 265 (4) ◽  
pp. G686-G698 ◽  
Author(s):  
B. S. Dixon ◽  
E. Sutherland ◽  
A. Alexander ◽  
D. Nibel ◽  
F. R. Simon

Hepatic membrane subfractions prepared from control rats demonstrated forskolin (FSK)-stimulated adenylate cyclase activity in the basolateral (sinusoidal) but not apical (canalicular) plasma membrane. After bile duct ligation (BDL) for 12 or 24 h, there was an increase in FSK-stimulated adenylate cyclase activity in the apical membrane (54.2 +/- 3.9 pmol.mg-1 x min-1). The mechanism for this increase was explored further. ATP hydrolysis was found to be much higher in the apical than the basolateral membrane. Increasing the ATP levels in the assay enhanced apical membrane adenylate cyclase activity (10.5 +/- 0.2 pmol.mg-l.min-1); however, total adenosinetriphosphatase (ATPase) activity was not altered after BDL. Extraction of the apical membrane with bile acids or other detergents resulted in a two- to threefold increase in adenylate cyclase activity (30.6 +/- 3.6 pmol.mg-1 x min-1; detergent C12E8) This suggested that bile duct ligation was acting via the detergent-like action of bile acids to uncover latent adenylate cyclase activity on apical membranes. Further studies demonstrated that both BDL and detergent extraction also enhanced toxin-directed ADP-ribosylation of Gs alpha (cholera toxin) and Gi alpha (pertussis toxin) in the apical but not the basolateral membrane. After BDL, Gi alpha was found to be twofold greater in the apical membrane than the basolateral membrane. Immunoblotting using specific G protein antibodies further confirmed that apical membranes from control rats had a higher concentration of Gi1, 2 alpha and beta and slightly elevated levels of Gi3 alpha and Gs alpha compared with the basolateral membrane. The results demonstrate that adenylate cyclase and heterotrimeric GTP-binding proteins are present on the apical membrane, but measurement of their functional activity requires detergent permeabilization of apical membrane vesicles and is limited by the presence of high ATPase activity.


Sign in / Sign up

Export Citation Format

Share Document