Nitric oxide-dependent and -independent components of cerebrovasodilation elicited by hypercapnia

1994 ◽  
Vol 266 (2) ◽  
pp. R546-R552 ◽  
Author(s):  
C. Iadecola ◽  
F. Zhang

We studied the effect of nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, on the increases in cerebral blood flow (CBF) elicited by stepwise elevations in arterial partial pressure of CO2 (PaCO2) from normocapnia up to 204 mmHg. Rats were anesthetized with halothane and ventilated. CBF was monitored over the parietal cortex using a laser-Doppler flowmeter. Increasing levels of hypercapnia elicited graded elevations in CBF that reached a plateau at PaCO2 = 82 +/- 1 mmHg (CBF +215 +/- 25%; n = 8; P < 0.05, analysis of variance). L-NAME (40 mg/kg i.v.; n = 8), but not nitro-D-arginine methyl ester (n = 8), reduced resting CBF (-42 +/- 4%) and attenuated the increase in CBF elicited by hypercapnia. The attenuation occurred only at PaCO2 40-80 mmHg and was maximal (-75 +/- 8%; P < 0.05) at 54 +/- 2 mmHg. At PaCO2 > or = 100 mmHg, L-NAME (40-80 mg/kg) did not attenuate the response (P > 0.05). Reduction of resting CBF (-50 +/- 4%; n = 6) by administration of chloralose (20-40 mg/kg i.v.) did not attenuate the CBF response to hypercapnia (P > 0.05). We also found that the attenuation by L-NAME of resting CBF (n = 5) and of the cerebrovasodilation elicited by hypercapnia (n = 6) has a relatively slow time course, the effects reaching a maximum 45-60 min after intravenous administration of the drug. We conclude that L-NAME does not attenuate the CBF response to CO2 uniformly at all levels of hypercapnia.(ABSTRACT TRUNCATED AT 250 WORDS)

1997 ◽  
Vol 273 (2) ◽  
pp. R661-R668 ◽  
Author(s):  
C. S. Ignacio ◽  
P. E. Curling ◽  
W. F. Childres ◽  
R. M. Bryan

Although perivascular nerves containing nitric oxide synthase (NOS) have been anatomically described for rat cerebral arteries, a dilator function for these nerves has eluded investigators when using isolated vessels. Rat middle cerebral arteries (MCAs) were isolated, pressurized, and electrically stimulated. The resting diameter of the MCAs after pressurization was 233 +/- 4 microns (n = 17) in one study. The MCAs showed a frequency-dependent dilation when stimulated. Maximum dilation (25-30% increase in diameter) occurred at a frequency of 8-16 Hz. Removal of endothelium or glibenclamide (10(-5) M), a blocker of ATP-sensitive potassium channels, had no effect on the dilations. The dilations were completely blocked with NG-nitro-L-arginine methyl ester (L-NAME) (10(-5) M), a general NOS inhibitor, and cold storage (24 h). The inhibition by L-NAME could be reversed by the addition of 10(-8) M L-arginine, the active precursor of NOS. Furthermore, 7-nitroindazole (10(-4) M), an inhibitor specific for the neuronal isoform of NOS, reduced the dilations by 43% (P < 0.05). Transections of nerve bundles originating from the sphenopalatine ganglia at the ethmoidal foramen blocked the dilations produced by electrical stimulations. We conclude that rat cerebral arteries have functionally intact perivascular nerves that dilate by releasing nitric oxide.


2005 ◽  
Vol 103 (1) ◽  
pp. 74-83 ◽  
Author(s):  
Pascal C. Chiari ◽  
Martin W. Bienengraeber ◽  
Dorothee Weihrauch ◽  
John G. Krolikowski ◽  
Judy R. Kersten ◽  
...  

Background Isoflurane produces delayed preconditioning in vivo. The authors tested the hypothesis that endothelial, inducible, or neuronal nitric oxide synthase (NOS) is a trigger or mediator of this protective effect. Methods In the absence or presence of exposure to isoflurane (1.0 minimum alveolar concentration) 24 h before experimentation, pentobarbital-anesthetized rabbits (n = 128) instrumented for hemodynamic measurement received 0.9% saline (control), the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (10 mg/kg), one of two of the selective inducible NOS antagonists aminoguanidine (300 mg/kg) or 1400W (0.5 mg/kg), or the selective neuronal NOS inhibitor 7-nitroindazole (50 mg/kg) administered before exposure to isoflurane (trigger; day 1) or left anterior descending coronary artery occlusion (mediator; day 2). All rabbits underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Tissue samples for reverse-transcription polymerase chain reaction and immunohistochemistry were also obtained in the presence or absence of N-nitro-l-arginine methyl ester with or without isoflurane pretreatment. Results Isoflurane significantly (P &lt; 0.05) reduced infarct size (23 +/- 5% [mean +/- SD] of the left ventricular area at risk; triphenyltetrazolium chloride staining) as compared with control (42 +/- 7%). N-nitro-l-arginine methyl ester administered before isoflurane or coronary occlusion abolished protection (49 +/- 7 and 43 +/- 10%, respectively). Aminoguanidine, 1400W, and 7-nitroindazole did not alter infarct size or affect isoflurane-induced delayed preconditioning. Isoflurane increased endothelial but not inducible NOS messenger RNA transcription and protein translation immediately and 24 h after administration of the volatile agent. Pretreatment with N-nitro-l-arginine methyl ester attenuated isoflurane-induced increases in endothelial NOS expression. Conclusions The results suggest that endothelial NOS but not inducible or neuronal NOS is a trigger and mediator of delayed preconditioning by isoflurane in vivo.


2012 ◽  
Vol 302 (1) ◽  
pp. R150-R158 ◽  
Author(s):  
Frank T. Spradley ◽  
Dao H. Ho ◽  
Kyu-Tae Kang ◽  
David M. Pollock ◽  
Jennifer S. Pollock

We hypothesized that vascular nitric oxide synthase (NOS) function and expression is differentially regulated in adult Dahl salt-sensitive rats maintained on Teklad or American Institutes of Nutrition (AIN)-76A standard chow diets from 3 to 16 wk old. At 16 wk old, acetylcholine (ACh)-mediated vasorelaxation and phenylephrine (PE)-mediated vasoconstriction in the presence and absence of NOS inhibitor, Nω-nitro-l-arginine methyl ester (l-NAME), was assessed in small-resistance mesenteric arteries and aortas. Rats maintained on either diet throughout the study had similar responses to ACh and PE in the presence or absence of l-NAME in both vascular preparations. We reasoned that changing from one diet to another as adults may induce vascular NOS dysfunction. In the absence of l-NAME, small arteries from Teklad-fed rats switched to AIN-76 diet and vice versa had similar responses to ACh and PE. Small-arterial NOS function was maintained in rats switched to AIN-76A from Teklad diet, whereas NOS function in response to ACh and PE was lost in the small arteries from rats changed to Teklad from AIN-76A diet. This loss of NOS function was echoed by reduced expression of NOS3, as well as phosphorylated NOS3. The change in NOS phenotype in the small arteries was observed without changes in blood pressure. Aortic responses to ACh or PE in the presence or absence of l-NAME were similar in all diet groups. These data indicate that changing standard chow diets leads to small arterial NOS dysfunction and reduced NOS signaling, predisposing Dahl salt-sensitive rats to vascular disease.


2009 ◽  
pp. 591-598
Author(s):  
S Ankarali ◽  
HC Ankarali ◽  
C Marangoz

It has been shown that nitric oxide (NO) increases aggression in male mice, whereas it decreases aggression in lactating female mice and prairie voles. It is also known that aggression can be exhibited at different levels in rodent species, strain or subtypes. The aims of this study were to investigate the proportion of aggressiveness in Wistar rats, the effect of intraperitoneally administered nonspecific nitric oxide synthase (NOS) inhibitor L-NAME (NG-nitro L-arginine methyl ester) on maternal aggression towards female intruders, and whether these effects are due to NO production or not. Rats were given saline intraperitoneally on the postpartum Day 2 and aggression levels were recorded. The same rats were given 60 mg/kg L-NAME or D-NAME (NG -nitro D-arginine methyl ester) on the postpartum Day 3 and their effects on aggression levels were compared to saline. While L-NAME administration did not cause any differences in the total number of aggressive behavior, aggression duration and aggression intensity, it reduced the proportion of animals showing aggressive behavior. In addition, the latency of the first aggression was significantly increased by L-NAME. In the D-NAME group, however, no significant change was found. Our results have shown that L-NAME reduces maternal aggression towards female intruders in Wistar rats through inhibition of NO production. These results suggest that the role of NO in offensive and defensive maternal aggression shares neural mechanisms.


1997 ◽  
Vol 273 (6) ◽  
pp. L1167-L1173 ◽  
Author(s):  
Wilhelm S. Cruz ◽  
Michael A. Moxley ◽  
John A. Corbett ◽  
William J. Longmore

The purpose of this study was to determine if the acute alveolar injury induced by subcutaneous injections of N-nitroso- N-methylurethane (NNMU) in rats is mediated by nitric oxide (NO ⋅). We show that intraperitoneal injections of the NO ⋅ synthase (NOS) inhibitor N ω-nitro-l-arginine methyl ester (l-NAME) or aminoguanidine significantly attenuate the NNMU-induced alveolar injury as assessed by 1) normalization of the alveolar-arterial O2difference, 2) attenuation of the lowered phospholipid-to-protein ratio in the crude surfactant pellet (CSP), 3) attenuation of the elevated minimal surface tension of the CSP, and 4) attenuation of polymorphonuclear neutrophilic infiltration into the alveolar space. Injections of N ω-nitro-d-arginine methyl ester, the inactive stereoisoform ofl-NAME, did not affect the acute lung injury. Western blot analysis of whole lung homogenates demonstrate an elevated expression of transcriptionally inducible, Ca2+-independent NOS (iNOS) in NNMU-injected rats compared with control saline-injected rats. NOS inhibitors did not affect NNMU-induced iNOS expression. These investigations demonstrate that the inhibition of NOS attenuates NNMU-induced acute lung injury, suggesting a role for NO ⋅ in the progression of acute respiratory distress syndrome.


Dermatology ◽  
2019 ◽  
Vol 236 (2) ◽  
pp. 151-159
Author(s):  
Nazgol-Sadat Haddadi ◽  
Saeed Shakiba ◽  
Khashayar Afshari ◽  
Arvin Haj-Mirzaian ◽  
Sara Vesaghati ◽  
...  

Background: Metformin ameliorates non-histamine-mediated itch. We have recently reported that the nitric oxide (NO) pathway is involved in chloroquine (CQ)-induced scratching behavior. Here we investigated the involvement of the NO pathway in the antipruritic effect of metformin on CQ-induced itch. Methods: Metformin (5–200 mg/kg, given intraperitoneally [i.p.]) was injected 4 h before CQ (400 µg/site, given intradermally [i.d.]) or compound 48/80 (100 µg/site, i.d.). A nonspecific nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME; 1 and 10 mg/kg, i.p.), or an NO precursor, L-arginine (10 and 100 mg/kg, i.p.) was administered 30 min before injection of CQ. A neural NOS (nNOS) inhibitor, 7-nitroindazole (7-NI; 1 and 10 nmol/site, i.d.) was concurrently administered with CQ. The scratching behavior was recorded for 30 min following the injection of CQ. We studied the changes in skin and spinal nitrite levels after treatments. Results: Our results showed that metformin (100 and 200 mg/kg) significantly reduced the CQ-induced scratching behavior but not the compound 48/80-induced scratching behavior. L-Arginine inhibited the antipruritic effect of metformin, while L-NAME and 7-NI significantly potentiated the inhibitory effects of a subeffective dose of metformin on the CQ-induced scratching behavior. The skin but not the spinal nitrite level was significantly increased after CQ administration. The elevated cutaneous nitrite level was reversed by effective doses of either metformin or 7-NI, but not by the subeffective doses of metformin + 7-NI. Conclusion: Acute injection of metformin significantly inhibits CQ-induced scratching behavior. This effect is mediated through inhibition of the NO pathway, especially by inhibiting the dermal nNOS enzyme.


1996 ◽  
Vol 271 (2) ◽  
pp. H806-H811 ◽  
Author(s):  
M. G. Melaragno ◽  
G. D. Fink

These experiments tested the hypothesis that hypertension caused by chronic inhibition of nitiric oxide synthase (NOS) is associated with augmented pressor responsiveness to angiotensin II (ANG II). Antagonism of ANG II AT1 receptors with losartan caused a greater fall in blood pressure (BP) in rats treated for 2 wk with the NOS inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) than in normotensive rats. The delayed time course of the decline in BP implicated the slow pressor effect (SPE) of ANG II in L-NAME hypertension. Further experiments showed that direct elicitation of the SPE by continuous low-dose (4 ng/min) intravenous infusion of ANG II in enalapril-treated rats resulted in a larger chronic increase in BP if NOS was inhibited. However, L-NAME alone also caused a significant increase in BP in enalapril-treated rats. The combined effect on BP of ANG II and L-NAME was merely additive. These results confirm that ANG II is involved in L-NAME hypertension. However, chronic pressor responsiveness to the peptide is not augmented by L-NAME.


Nitric Oxide ◽  
2001 ◽  
Vol 5 (2) ◽  
pp. 208-211 ◽  
Author(s):  
Jean-Charles Preiser ◽  
Haibo Zhang ◽  
Bernard Vray ◽  
Andreas Hrabak ◽  
Jean-Louis Vincent

2007 ◽  
Vol 292 (4) ◽  
pp. H1995-H2003 ◽  
Author(s):  
Zuo-Hui Shao ◽  
Wei-Tien Chang ◽  
Kim Chai Chan ◽  
Kim R. Wojcik ◽  
Chin-Wang Hsu ◽  
...  

Optimal timing of therapeutic hypothermia for cardiac ischemia is unknown. Our prior work suggests that ischemia with rapid reperfusion (I/R) in cardiomyocytes can be more damaging than prolonged ischemia alone. Also, these cardiomyocytes demonstrate protein kinase C (PKC) activation and nitric oxide (NO) signaling that confer protection against I/R injury. Thus we hypothesized that hypothermia will protect most using extended ischemia and early reperfusion cooling and is mediated via PKC and NO synthase (NOS). Chick cardiomyocytes were exposed to an established model of 1-h ischemia/3-h reperfusion, and the same field of initially contracting cells was monitored for viability and NO generation. Normothermic I/R resulted in 49.7 ± 3.4% cell death. Hypothermia induction to 25°C was most protective (14.3 ± 0.6% death, P < 0.001 vs. I/R control) when instituted during extended ischemia and early reperfusion, compared with induction after reperfusion (22.4 ± 2.9% death). Protection was completely lost if onset of cooling was delayed by 15 min of reperfusion (45.0 ± 8.2% death). Extended ischemia/early reperfusion cooling was associated with increased and sustained NO generation at reperfusion and decreased caspase-3 activation. The NOS inhibitor Nω-nitro-l-arginine methyl ester (200 μM) reversed these changes and abrogated hypothermia protection. In addition, the PKCε inhibitor myr-PKCε v1-2 (5 μM) also reversed NO production and hypothermia protection. In conclusion, therapeutic hypothermia initiated during extended ischemia/early reperfusion optimally protects cardiomyocytes from I/R injury. Such protection appears to be mediated by increased NO generation via activation of protein kinase Cε; nitric oxide synthase.


1999 ◽  
Vol 91 (6) ◽  
pp. 1724-1724 ◽  
Author(s):  
Lars G. Fischer ◽  
Damian J. Horstman ◽  
Klaus Hahnenkamp ◽  
Nancy E. Kechner ◽  
George F. Rich

Background Nonselective nitric oxide synthase (NOS) inhibition has detrimental effects in sepsis because of inhibition of the physiologically important endothelial NOS (eNOS). The authors hypothesized that selective inducible NOS (iNOS) inhibition would maintain eNOS vasodilation but prevent acetylcholine- and bradykinin-mediated vasoconstriction caused by lipopolysaccharide-induced endothelial dysfunction. Methods Rats were administered intraperitoneal lipopolysaccharide (15 mg/kg) with and without the selective iNOS inhibitors L-N6-(1-iminoethyl)-lysine (L-NIL, 3 mg/kg), dexamethasone (1 mg/kg), or the nonselective NOS inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 5 mg/kg). Six hours later, the lungs were isolated and pulmonary vasoreactivity was assessed with hypoxic vasoconstrictions (3% O2), acetylcholine (1 microg), Biochemical Engineering, and bradykinin (3 microg). In additional lipopolysaccharide experiments, L-NIL (10 microM) or 4-Diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, 100 microM), a selective muscarinic M3 antagonist, was added into the perfusate. Results Exhaled nitric oxide was higher in the lipopolysaccharide group (37.7+/-17.8 ppb) compared with the control group (0.4+/-0.7 ppb). L-NIL and dexamethasone decreased exhaled nitric oxide in lipopolysaccharide rats by 83 and 79%, respectively, whereas L-NAME had no effect. In control lungs, L-NAME significantly decreased acetylcholine- and bradykinin-induced vasodilation by 75% and increased hypoxic vasoconstrictions, whereas L-NIL and dexamethasone had no effect. In lipopolysaccharide lungs, acetylcholine and bradykinin both transiently increased the pulmonary artery pressure by 8.4+/-2.0 mmHg and 35.3+/-11.7 mmHg, respectively, immediately after vasodilation. L-NIL and dexamethasone both attenuated this vasoconstriction by 70%, whereas L-NAME did not. The acetylcholine vasoconstriction was dose-dependent (0.01-1.0 microg), unaffected by L-NIL added to the perfusate, and abolished by 4-DAMP. Conclusions In isolated perfused lungs, acetylcholine and bradykinin caused vasoconstriction in lipopolysaccharide-treated rats. This vasoconstriction was attenuated by administration of the iNOS inhibitor L-NIL but not with L-NAME. Furthermore, L-NIL administered with lipopolysaccharide preserved endothelium nitric oxide-dependent vasodilation, whereas L-NAME did not.


Sign in / Sign up

Export Citation Format

Share Document