Fractal nature of short-term systolic BP and HR variability during lower body negative pressure

1994 ◽  
Vol 267 (1) ◽  
pp. R26-R33 ◽  
Author(s):  
G. C. Butler ◽  
Y. Yamamoto ◽  
R. L. Hughson

We have shown previously that the heart rate variability (HRV) signal is fractal in nature with a high degree of complexity, as given by the calculated fractal dimension (DF). We have also reported that loss of complexity, as indicated by a reduction in DF of HRV, is associated with orthostatic hypotension and impending syncope. To extend this investigation of cardiovascular responses, we have investigated the signal characteristics of short-term systolic blood pressure variability (BPV) coincident with measurements of HRV during orthostatic stress. Eight healthy men completed a test protocol of 20 min supine rest followed sequentially by 10 min at each of -5, -15, -25, -40, and -50 mmHg lower body negative pressure (LBNP) and 10 min supine recovery. We found that resting BPV and HRV were fractal with approximately 70% of both variables in the fractal component of the variability signal. The slope of the 1/f beta relationship was 1.16 +/- 0.12 for HRV and 2.31 +/- 0.17 for BPV. With increasing levels of orthostatic stress, the 1/f beta slope of HRV increased significantly to 1.68 +/- 0.08 at -50 mmHg LBNP, whereas the 1/f beta slope was unchanged for BPV. Indicators of parasympathetic and sympathetic nervous system activity derived from heart rate variability suggested reduced and increased values, respectively, as the LBNP increased. These data indicate important differences in heart rate and blood pressure control under orthostatic stress.

1987 ◽  
Vol 63 (2) ◽  
pp. 719-725 ◽  
Author(s):  
C. M. Tomaselli ◽  
M. A. Frey ◽  
R. A. Kenney ◽  
G. W. Hoffler

We have investigated the pattern of fluid redistribution and cardiovascular responses during graduated orthostatic stress. Twelve men, age 30–39 yr, underwent a 25-min lower-body negative pressure (LBNP) test protocol that involved sequential stages of LBNP at -8 mmHg (1 min), -16 mmHg (1 min), -30 mmHg (3 min), -40 mmHg (5 min), -50 mmHg (5 min), -40 mmHg (5 min), -30 mmHg (3 min), -16 mmHg (1 min), and -8 mmHg (1 min). Data were recorded at the end of each stage. For many measured variables values during the descending phase of LBNP (-8 to -40 mmHg) were significantly different from values during the ascending phase of (-40 to -8 mmHg). These differences appear to be due to a component of fluid translocation that occurs during LBNP and cannot be reversed within the duration of the procedure. We hypothesize that this slowly reversed component is sequestration of fluid in the interstitial and lymphatic compartments. In contrast, venous pooling is a rapidly reversible component of fluid movement during LBNP. A scheme describing fluid and cardiovascular responses to LBNP based on these data and the data of other investigators is presented.


2001 ◽  
Vol 86 (2) ◽  
pp. 559-564 ◽  
Author(s):  
Ichiro Hidaka ◽  
Shin-Ichi Ando ◽  
Hideaki Shigematsu ◽  
Koji Sakai ◽  
Soko Setoguchi ◽  
...  

By injecting noise into the carotid sinus baroreceptors, we previously showed that heart rate (HR) responses to weak oscillatory tilt were enhanced via a mechanism known as “stochastic resonance.” It remains unclear, however, whether the same responses would be observed when using oscillatory lower body negative pressure (LBNP), which would unload the cardiopulmonary baroreceptors with physically negligible effects on the arterial system. Also, the vasomotor sympathetic activity directly controlling peripheral resistance against hypotensive stimuli was not observed. We therefore investigated the effects of weak (0 to approximately −10 mmHg) oscillatory (0.03 Hz) LBNP on HR and muscle sympathetic nerve activity (MSNA) while adding incremental noise to the carotid sinus baroreceptors via a pneumatic neck chamber. The signal-to-noise ratio of HR, cardiac interbeat interval, and total MSNA were all significantly improved by increasing noise intensity, while there was no significant change in the arterial blood pressure in synchronized with the oscillatory LBNP. We conclude that the stochastic resonance, affecting both HR and MSNA, results from the interaction of noise with the signal in the brain stem, where the neuronal inputs from the arterial and cardiopulmonary baroreceptors first come together in the nucleus tractus solitarius. Also, these results indicate that the noise could induce functional improvement in human blood pressure regulatory system in overcoming given hypotensive stimuli.


2001 ◽  
Vol 281 (2) ◽  
pp. R468-R475 ◽  
Author(s):  
John S. Floras ◽  
Gary C. Butler ◽  
Shin-Ichi Ando ◽  
Steven C. Brooks ◽  
Michael J. Pollard ◽  
...  

Lower body negative pressure (LBNP; −5 and −15 mmHg) was applied to 14 men (mean age 44 yr) to test the hypothesis that reductions in preload without effect on stroke volume or blood pressure increase selectively muscle sympathetic nerve activity (MSNA), but not the ratio of low- to high-frequency harmonic component of spectral power (PL/PH), a coarse-graining power spectral estimate of sympathetic heart rate (HR) modulation. LBNP at −5 mmHg lowered central venous pressure and had no effect on stroke volume (Doppler) or systolic blood pressure but reduced vagal HR modulation. This latter finding, a manifestation of arterial baroreceptor unloading, refutes the concept that low levels of LBNP interrogate, selectively, cardiopulmonary reflexes. MSNA increased, whereas PL/PH and HR were unchanged. This discordance is consistent with selectivity of efferent sympathetic responses to nonhypotensive LBNP and with unloading of tonically active sympathoexcitatory atrial reflexes in some subjects. Hypotensive LBNP (−15 mmHg) increased MSNA and PL/PH, but there was no correlation between these changes within subjects. Therefore, HR variability has limited utility as an estimate of the magnitude of orthostatic changes in sympathetic discharge to muscle.


1992 ◽  
Vol 83 (5) ◽  
pp. 535-540 ◽  
Author(s):  
P. J. Lacolley ◽  
B. M. Pannier ◽  
M. A. Slama ◽  
J. L. Cuche ◽  
A. P. G. Hoeks ◽  
...  

1. Pulsatile changes in the diameter of the common carotid artery were studied transcutaneously using an echo-tracking technique in 15 normal subjects: eight subjects before and during application of graded lower-body negative pressure from −5 to −15 mmHg, and seven subjects before and during weight-bearing head-up tilt at 30 and 60 degrees. 2. In concomitant studies of changes in forearm vascular resistance, it was seen that mild lower-body negative pressure produced deactivation of cardiopulmonary receptors without changes in systemic blood pressure or heart rate. 3. After lower-body negative pressure, a significant decrease in carotid arterial diastolic diameter [from 0.662 ± 0.028 to 0.624 ± 0.033 cm (lower-body negative pressure −10 mmHg) and 0.640 ± 0.030 cm lower-body negative pressure −15 mmHg), P<0.001 and <0.05] was observed. 4. After head-up tilt, carotid arterial diameter was also significantly decreased at 30 and 60 degrees, whereas a significant increase in heart rate occurred only at 60 degrees and mean blood pressure did not change. 5. The study provides evidence that the geometry of the arterial wall is substantially modified by noninvasive manoeuvres such as head-up tilting and lower-body negative pressure. The latter is assumed to selectively deactivate human cardiopulmonary receptors, but the present data suggest that local changes may also influence carotid baroreceptors.


2011 ◽  
Vol 36 (3) ◽  
pp. 376-381 ◽  
Author(s):  
Charlotte W. Usselman ◽  
Louis Mattar ◽  
Jasna Twynstra ◽  
Ian Welch ◽  
J. Kevin Shoemaker

The objective of this study was to determine whether a plane of urethane–α-chloralose anaesthesia that suppresses motor reflexes would affect baroreflex cardiovascular control relative to a plane of anaesthesia that leaves motor reflexes intact. Adult male Sprague–Dawley rats were anaesthetized to either a light (motor reflexes intact) or deep (motor reflexes suppressed) plane of anaesthesia. Animals were exposed to graded (–2 to –10 mm Hg) lower body negative pressure while heart rate, vascular resistance, and mean arterial pressure were assessed. No between-group differences were observed in baseline hemodynamics. Graded lower body negative pressure progressively increased heart rate (p < 0.01) and vascular resistance (p < 0.001) and reduced mean arterial pressure (p < 0.001) similarly in light and deep planes of anaesthesia. Therefore, the deep plane of anaesthesia was not associated with a degradation of the autonomic response to baroreceptor unloading beyond that observed at the light plane. These data support the use of urethane–α-chloralose anaesthesia in studies examining reflex cardiovascular control concomitant with some degree of noxious stimulation.


1994 ◽  
Vol 77 (1) ◽  
pp. 69-77 ◽  
Author(s):  
R. L. Hughson ◽  
A. Maillet ◽  
C. Gharib ◽  
J. O. Fortrat ◽  
Y. Yamamoto ◽  
...  

Effects of 28 days of continuous 6 degrees head-down tilt bed rest on spontaneous vagally mediated baroreflex response slope were evaluated from beat-by-beat relationships between R-R interval and systolic arterial blood pressure. Twelve healthy men (age 27–42 yr) were assigned to either countermeasure (CM) or no-countermeasure (no-CM) groups. CM consisted of strenuous short-term exercise once per day 6 days/wk from days 7 to 28 and lower body negative pressure (LBNP) for 15 min on days 16, 18, 20, and 22–28. Spontaneous baroreflex slope was evaluated by application of linear regression to sequences of at least three beats in which systolic blood pressure and R-R interval changed in the same direction. Measurements were made pre-, mid- (day 15), and post-bed rest at rest and during progressive LBNP tests (3 min at each of -20, -30, -40, and -50 mmHg). R-R interval decreased progressively and significantly (P < 0.0001) over duration of bed rest. Spontaneous baroreflex slope at rest in pre-bed rest was 18.5 +/- 2.1 ms/mm Hg for CM and 14.9 +/- 1.6 ms/mmHg for no-CM. There was a significant reduction in baroreflex slope as a function of bed rest, and it was further reduced during LBNP (P < 0.0001). Between CM and no-CM groups differences existed, but these were present pre-bed rest and appeared unaffected by countermeasures.(ABSTRACT TRUNCATED AT 250 WORDS)


2010 ◽  
Vol 18 (1) ◽  
pp. 27-42 ◽  
Author(s):  
Juliane P. Hernandez ◽  
Kristin Roever ◽  
Tonya Seed

This investigation attempted to determine whether heart-rate and blood pressure responses to maximal acute lower body negative pressure (LBNP) are exacerbated compared with maximal graded LBNP in active older (n= 9, 70 ± 7 yr) and endurance-trained younger (n= 10, 23 ± 3 yr) individuals. Heart rate increased earlier during graded LBNP in the younger group (−40 mm Hg vs. tolerance) and was significantly higher than that of the older adults at the point of tolerance. Mean arterial pressure (MAP) decreased more in the older than the younger individuals during graded LBNP. LBNP-tolerance index was significantly greater in the younger group (309 ± 52 vs. 255.6 ± 48 mm Hg/min). Acute doses of LBNP elicited slower heart-rate responses in the older group. Despite these age-related differences, MAP responses were not different between groups with acute LBNP, so age per se does not appear to predispose individuals to orthostatic intolerance.


Sign in / Sign up

Export Citation Format

Share Document