Role of renal medullary blood flow in the development of L-NAME hypertension in rats

1995 ◽  
Vol 268 (2) ◽  
pp. R317-R323 ◽  
Author(s):  
K. Nakanishi ◽  
D. L. Mattson ◽  
A. W. Cowley

The effect of chronic intravenous infusion of the nitric oxide inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 8.6 mg.kg-1.day-1) on blood pressure, intrarenal blood flow distribution, and sodium and water balance was studied in conscious rats. On the 1st day of intravenous L-NAME infusion, renal medullary blood flow was reduced by 22%, renal cortical blood flow was unaltered, approximately 1 meq of sodium and 12 ml of water were retained, and blood pressure increased from 96 +/- 2 to 118 +/- 2 mmHg. Medullary blood flow was maintained at this decreased level, sodium continued to be retained, body weight continued to increase, and blood pressure remained elevated for the 5 days of L-NAME infusion. During the postcontrol period, blood flow in the renal medulla returned to levels not significantly different from control; the animals went into negative sodium balance and stopped gaining weight, and blood pressure returned to control. The present experiments indicate that decreased renal medullary blood flow and retention of sodium and water play an important role in the development of hypertension during chronic systemic L-NAME administration despite no measurable changes in renal cortical blood flow.

2003 ◽  
Vol 284 (1) ◽  
pp. R13-R27 ◽  
Author(s):  
David L. Mattson

The control of renal medullary perfusion and the impact of alterations in medullary blood flow on renal function have been topics of research interest for almost four decades. Many studies have examined the vascular architecture of the renal medulla, the factors that regulate renal medullary blood flow, and the influence of medullary perfusion on sodium and water excretion and arterial pressure. Despite these studies, there are still a number of important unanswered questions in regard to the control of medullary perfusion and the influence of medullary blood flow on renal excretory function and blood pressure. This review will first address the vascular architecture of the renal medulla and the potential mechanisms whereby medullary perfusion may be regulated. The known extrarenal and local systems that influence the medullary vasculature will then be summarized. Finally, this review will present an overview of the evidence supporting the concept that selective changes in medullary perfusion can have a potent influence on sodium and water excretion with a long-term influence on arterial blood pressure regulation.


1994 ◽  
Vol 266 (5) ◽  
pp. H1918-H1926 ◽  
Author(s):  
D. L. Mattson ◽  
S. Lu ◽  
K. Nakanishi ◽  
P. E. Papanek ◽  
A. W. Cowley

The effects of chronic nitric oxide inhibition in the renal medulla on renal cortical and medullary blood flow, sodium balance, and blood pressure were evaluated in conscious uninephrectomized Sprague-Dawley rats. During a 5-day renal medullary interstitial infusion of the nitric oxide inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 120 micrograms/h) in saline (0.5 ml/min), renal medullary blood flow was selectively decreased by 30% after 2 h and was maintained at that level for the entire infusion. The decrease in medullary blood flow was associated with sodium retention and increased blood pressure. After the cessation of L-NAME infusion, medullary blood flow returned to control, and the sodium balance became negative as blood pressure returned to baseline. These data indicate that renal medullary nitric oxide plays an important role in the regulation of renal blood flow, sodium excretion, and blood pressure.


1987 ◽  
Vol 252 (3) ◽  
pp. H521-H528 ◽  
Author(s):  
M. J. Breslow ◽  
D. A. Jordan ◽  
S. T. Thellman ◽  
R. J. Traystman

Hemorrhagic hypotension produces an increase in adrenal medullary blood flow and a decrease in adrenal cortical blood flow. To determine whether changes in adrenal blood flow during hemorrhage are neurally mediated, we compared blood flow responses following adrenal denervation (splanchnic nerve section) with changes in the contralateral, neurally intact adrenal. Blood pressure was reduced and maintained at 60 mmHg for 25 min by hemorrhage into a pressurized bottle system. Adrenal cortical blood flow decreased to 50% of control with hemorrhage in both the intact and denervated adrenal. Adrenal medullary blood flow increased to four times control levels at 15 and 25 min posthemorrhage in the intact adrenal, but was reduced to 50% of control at 3, 5, and 10 min posthemorrhage in the denervated adrenal. In a separate group of dogs, the greater splanchnic nerve on one side was electrically stimulated at 2, 5, or 15 Hz (n = 4 each group) for 40 min. Adrenal medullary blood flow increased 5- to 10-fold in the stimulated adrenal but was unchanged in the contralateral, nonstimulated adrenal. Adrenal cortical blood flow was not affected by nerve stimulation. We conclude that activity of the splanchnic nerve profoundly affects adrenal medullary vessels but not adrenal cortical vessels and mediates the observed increase in adrenal medullary blood flow during hemorrhagic hypotension.


1996 ◽  
Vol 270 (5) ◽  
pp. F833-F838 ◽  
Author(s):  
D. S. Majid ◽  
L. G. Navar

Although it is well recognized that whole kidney and cortical blood flow exhibit efficient autoregulation in response to alterations in renal arterial pressure (RAP), the autoregulatory behavior of medullary blood flow (MBF) has remained uncertain. We have evaluated MBF responses to stepwise reductions in RAP for both short-term (2 min, n = 6) and longer periods (15 min, n = 7) using single-fiber laser-Doppler flowmetry with needle probes inserted into the mid-medullary region in denervated kidneys of 13 anesthetized dogs. The changes in cortical blood flow (CBF) were assessed with either a surface probe or a needle probe inserted into the cortex. Control total renal blood flow (RBF), assessed by electromagnetic flow probe in these dogs, was 5.2 +/- 0.3 ml.min-1.g-1, and glomerular filtration rate was 0.97 +/- 0.05 ml.min-1.g-1 (n = 7). RBF, MBF, and CBF all exhibited efficient autoregulatory behavior during changes in RAP from 150 to 75 mmHg. The slopes of RAP vs. RBF, CBF, as well as MBF, were not significantly different from zero within this range of RAP. Below RAP of 75 mmHg, all indexes of blood flow showed linear decreases with reductions in pressure. The data indicate that blood flow in the renal medulla of dogs exhibits efficient autoregulatory behavior, similar to that in the cortex.


1981 ◽  
Vol 241 (3) ◽  
pp. H342-H347 ◽  
Author(s):  
E. S. Ofjord ◽  
G. Clausen ◽  
K. Aukland

Skimming could result in erroneous estimation of renal cortical blood flow distribution as measured by microspheres. Skimming of microspheres with diameters 10, 12, and 15 micrometers and red blood cells was therefore studied in a model in which an interlobular artery and its first arteriolar branch were simulated by 80- and 30-micrometers-wide slits between glass prisms. The experiments were performed with citrated blood at a hematocrit (Hct) of 40, flow velocities of 3 and 6 cm/s, and branch flow varying from 2 to 25%. At a branch flow fraction comparable to that of a deep arteriole in the dog kidney (3%), Hct in branch blood was 24% lower than that of input blood, whereas 10-, 12-, and 15-micrometers microsphere concentrations were 75, 81, and 87% lower, respectively. The size-dependent skimming was probably caused by wall exclusion in the main channel. Differences in particle inertia did not affect skimming. The results suggest that the disparate local flow values obtained by use of microspheres of different sizes in dog and rat kidneys are due to a size-dependent skimming of the microspheres.


1986 ◽  
Vol 64 (7) ◽  
pp. 873-880 ◽  
Author(s):  
W. A. Cupples

The vasculature of the mammalian renal medulla is complex, having neither discrete input nor output. There is also efficient countercurrent exchange between ascending and descending vasa recta in the vascular bundles. These considerations have hampered measurement of medullary blood flow since they impose pronounced constraints on methods used to assess flow. Three main strategies have been used: (i) indicator extraction; (ii) erythrocyte velocity tracking; and (iii) indicator dilution. These are discussed with respect to their assumptions, requirements, and limitations. There is a consensus that medullary blood flow is autoregulated, albeit over a narrower pressure range than is total renal blood flow. When normalized to gram tissue weight, medullary blood flow in the dog is similar to that in the rat, on the order of 1 to 1.5 mL∙min−1∙g−1. This is considerably greater than estimated by the radioiodinated albumin uptake method which has severe conceptual and practical problems. From both theoretical and experimental evidence it ssems that urinary concentrating ability is considerably less sensitive to changes in medullary blood flow than is often assumed.


1999 ◽  
Vol 277 (5) ◽  
pp. F797-F804 ◽  
Author(s):  
So Yeon Chin ◽  
Kailash N. Pandey ◽  
Shang-Jin Shi ◽  
Hiroyuki Kobori ◽  
Carol Moreno ◽  
...  

We have previously demonstrated that nitric oxide (NO) exerts a greater modulatory influence on renal cortical blood flow in ANG II-infused hypertensive rats compared with normotensive rats. In the present study, we determined nitric oxide synthase (NOS) activities and protein levels in the renal cortex and medulla of normotensive and ANG II-infused hypertensive rats. Enzyme activity was determined by measuring the rate of formation ofl-[14C]citrulline froml-[14C]arginine. Western blot analysis was performed to determine the regional expression of endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) isoforms in the renal cortex and medulla of control and ANG II-infused rats. Male Sprague-Dawley rats were prepared by the infusion of ANG II at a rate of 65 ng/min via osmotic minipumps implanted subcutaneously for 13 days and compared with sham-operated rats. Systolic arterial pressures were 127 ± 2 and 182 ± 3 mmHg in control ( n = 13) and ANG II-infused rats ( n = 13), respectively. The Ca2+-dependent NOS activity, expressed as picomoles of citrulline formed per minute per gram wet weight, was higher in the renal cortex of ANG II-infused rats (91 ± 11) than in control rats (42 ± 12). Likewise, both eNOS and nNOS were markedly elevated in the renal cortex of the ANG II-treated rats. In both groups of rats, Ca2+-dependent NOS activity was higher in the renal medulla than in the cortex; however, no differences in medullary NOS activity were observed between the groups. Also, no differences in medullary eNOS levels were observed between the groups; however, medullary nNOS was decreased by 45% in the ANG II-infused rats. For the Ca2+-independent NOS activities, the renal cortex exhibited a greater activity in the control rats (174 ± 23) than in ANG II-infused rats (101 ± 10). Similarly, cortical iNOS was greater by 47% in the control rats than in ANG II-treated rats. No differences in the activity were found for the renal medulla between the groups. There was no detectable signal for iNOS in the renal medulla for both groups. These data indicate that there is a differential distribution of NOS activity, with the Ca2+-dependent activity and protein expression higher in the renal cortex of ANG II-infused rats compared with control rats, and support the hypothesis that increased constitutive NOS activity exerts a protective effect in ANG II-induced hypertension to maintain adequate renal cortical blood flow.


1998 ◽  
Vol 275 (5) ◽  
pp. R1667-R1673 ◽  
Author(s):  
Noriyuki Miyata ◽  
Ai Ping Zou ◽  
David L. Mattson ◽  
Allen W. Cowley

Studies were designed to examine the effects of renal medullary interstitial infusion of l-arginine (l-Arg) on the development of high-salt-induced hypertension in Dahl salt-sensitive/Rapp (DS) rats. The threshold dose of l-Arg (300 μg ⋅ kg−1 ⋅ min−1) that increased the renal medullary blood flow without altering the cortical blood flow was first determined in anesthetized DS rats. Studies were then carried out to determine the effects of this dose ofl-Arg on salt-induced hypertension in DS rats. In the absence of chronic medullaryl-Arg infusion, mean arterial pressure (MAP) increased in DS rats from 125 ± 2 to 167 ± 5 mmHg by day 5 of a high-salt diet (4.0%), with no change observed in Wistar-Kyoto (WKY) or Dahl salt-resistant/Rapp (DR) rats. MAP did not change significantly with medullary infusion ofl-Arg alone in DR rats (control = 104 ± 1 mmHg) or in WKY rats (control = 120 ± 3 mmHg) and was not significantly changed from these levels during the 7 days ofl-Arg infusion combined with high-NaCl diet. The same amount of l-Arg that prevented salt-induced hypertension in DS rats when infused into the renal medulla (300 μg ⋅ kg−1 ⋅ min−1) failed to blunt salt-induced hypertension when administered intravenously to DS rats. DS rats receiving l-Arg (300 μg ⋅ kg−1 ⋅ min−1iv) exhibited an increase in plasma l-Arg from control concentrations of 138 ± 11 to 218 ± 4 μmol/l, while MAP, which averaged 124 ± 3 mmHg during the 3-day control period, rose to 165 ± 5 mmHg by day 5of high salt (4%) intake. These results indicate that the prevention of salt sensitivity in DS rats was due specifically to the action of l-Arg on renal medullary function and that DS rats may have a deficit of medullary substrate availability and NO production.


1995 ◽  
Vol 269 (4) ◽  
pp. F571-F580 ◽  
Author(s):  
W. M. Janssen ◽  
H. Beekhuis ◽  
R. de Bruin ◽  
P. E. de Jong ◽  
D. de Zeeuw

A new technique for noninvasive measurement of intrarenal blood flow distribution over cortex and medulla is proposed. The technique involves analysis of 123I-labeled hippuran renography, according to a kinetic model that describes the flow of 123I-hippuran from the heart (input) through the renal cortex and medulla to the bladder (output). The method is validated and compared with the standard microsphere injection technique in anesthetized dogs. Changes in intrarenal blood flow distribution were induced by infusion of placebo (n = 6), angiotensin I (n = 5), or atrial natriuretic factor (n = 5). Baseline percentage medullary blood flow in the left kidney was 12 +/- 1% of total renal blood flow measured with microspheres and 15 +/- 1% with renography. During infusion of the placebo, medullary blood flow decreased slightly compared with baseline, as measured with both methods, by 2 +/- 6 (microspheres) and 1 +/- 8% (renography). Infusion of angiotensin I caused a marked fall in medullary blood flow by 42 +/- 11 (microspheres) and 57 +/- 8% (renography). In contrast, infusion of atrial natriuretic factor caused a small rise in medullary blood flow as measured with both methods (9 +/- 3 and 12 +/- 11%, respectively). The absolute and percent changes in medullary blood flow measured with renography correlated with those measured with microspheres (left kidney: r = 0.67, P = 0.005; r = 0.71, P = 0.003, respectively; right kidney: r = 0.62, P = 0.01; r = 0.68, P = 0.004, respectively). We conclude that the proposed kinetic model of renal 123I-hippuran handling can be used to measure changes in intrarenal blood flow distribution and, because of its noninvasive character, may be of use in clinical studies.


Sign in / Sign up

Export Citation Format

Share Document