Role of the renin-angiotensin system in mediating the effects of posture on renal function

1996 ◽  
Vol 271 (1) ◽  
pp. R282-R288 ◽  
Author(s):  
G. A. Reinhart ◽  
T. E. Lohmeier

This study was designed to quantitate the influence of the neurohumoral activation associated with orthostatic stress on renal hemodynamics and sodium excretion and, furthermore, to determine the importance of the renin-angiotensin system in mediating these changes in renal function. Seven conscious dogs were studied while lying in the recumbent position and, subsequently, after standing in a supporting sling. Experiments were conducted under control conditions and after plasma angiotensin II (ANG II) concentration was fixed at control levels by chronic infusion of captopril (14 micrograms.kg-1.min-1) and ANG II (0.5 +/- 0.02 ng.kg-1.min-1). During control experiments, 45 min of standing increased plasma renin activity twofold, whereas mean arterial pressure, heart rate, and plasma norepinephrine concentration remained unchanged. During standing, glomerular filtration rate (GFR) and renal plasma flow (RPF) fell to 88 +/- 2 and 77 +/- 3% of recumbent values, respectively, whereas filtration fraction (FF) increased 16 +/- 1%. Additionally, urinary (UNaV) and fractional sodium excretion (FENa) decreased to 27 +/- 6 and 30 +/- 7% of recumbent values, respectively. When plasma ANG II concentration was fixed at control levels during standing, there were no significant changes in GFR, whereas increments in FF and reductions in RPF, UNaV, and FENa were attenuated by 63, 40, 30, and 33%, respectively. These data suggest that, in conscious dogs, standing in a supporting sling causes reflex activation of the sympathetic nervous and renin-angiotensin systems, eliciting reductions in GFR, RPF, and UNaV. Furthermore, ANG II contributes significantly to the effects of passive standing on renal hemodynamics and UNaV.

1989 ◽  
Vol 257 (5) ◽  
pp. R1169-R1174 ◽  
Author(s):  
H. L. Mizelle ◽  
J. E. Hall ◽  
D. A. Hildebrandt

The aim of this study was to quantitate the effects of increases in atrial natriuretic peptide (ANP), within the pathophysiological range, on the acute pressure natriuresis mechanism and the role of the renin-angiotensin system (RAS) in modulating these effects. Renal hemodynamics and electrolyte excretion were measured in anesthetized dogs while renal perfusion pressure (RPP) was controlled at three levels (120-122, 100, and 75 mmHg) with and without intrarenal infusion of ANP at 5 ng.kg-1.min-1. Sodium excretion was significantly higher during ANP infusion at RPP of 122 +/- 3 mmHg, averaging 55.8 +/- 13.7 during control and 113.3 +/- 23.3 mueq/min during ANP infusion. AT RPP of 101 +/- 1 mmHg, sodium excretion was 51.8 +/- 17.4 during control and 93.0 +/- 17.6 mueq/min during ANP infusion, but at RPP of 75 +/- 0 mmHg there was no difference in sodium excretion between control and ANP infusion. In a second set of dogs, angiotensin II (ANG II) formation was blocked with captopril (20 micrograms.kg-1.min-1), circulating (5 ng.kg-1.min-1), and the above protocol was repeated. When the RAS was fixed, the renal responses to ANP infusion were abolished, even at the higher pressure levels. These data indicate that ANP increases the slope of pressure natriuresis; at higher levels of RPP, ANP potentiates pressure natriuresis but not at lower pressures. In addition, part of this effect may be due to suppression of the RAS, because the ANP-induced shift in the pressure natriuresis relationship was abolished when circulating ANG II was maintained constant.


1983 ◽  
Vol 245 (2) ◽  
pp. R259-R264 ◽  
Author(s):  
J. P. Koepke ◽  
P. A. Obrist

The effects of inhibition of the renin-angiotensin system on the decreased renal excretion of sodium and water resulting from behavioral stress (shock avoidance) were examined in conscious saline-infused (4-5 ml/min) dogs. During saline infusion alone in six dogs, avoidance decreased sodium excretion (64% from 329 mueq/min) and urine flow (63% from 1.9 ml/min). During converting enzyme inhibition with captopril in the same dogs, the decreases in sodium excretion (35% from 464 mueq/min) and urine flow (35% from 2.6 ml/min) during avoidance were attenuated. Similarly, in six other dogs, avoidance decreased sodium excretion (41% from 361 mueq/min) and urine flow (43% from 2.1 ml/min) with saline infusion alone. During angiotension II (ANG II) receptor antagonism with saralasin, decreases in sodium excretion (29% from 417 mueq/min) and urine flow (27% from 2.2 ml/min) were attenuated. These mean changes in excretion during inhibition of the renin-angiotensin system were significantly (P less than 0.05) less than during saline alone. Whereas decreases in fractional sodium and water excretion were attenuated by renin-angiotensin inhibition, decreases in glomerular filtration rate and effective renal blood flow and increases in mean arterial pressure were not affected. These results indicate that ANG II contributes to the renal excretory response to avoidance.


2020 ◽  
Vol 318 (1) ◽  
pp. F25-F34 ◽  
Author(s):  
David D. M. Nicholl ◽  
Patrick J. Hanly ◽  
Ann A. Zalucky ◽  
George B. Handley ◽  
Darlene Y. Sola ◽  
...  

Men have faster loss of kidney function and greater renal renin-angiotensin system (RAS) activity compared with women. Obstructive sleep apnea (OSA) is common in chronic kidney disease; the vascular effects of OSA differ by sex, and OSA-associated glomerular hyperfiltration can be reversed by continuous positive airway pressure (CPAP) therapy. We evaluated sex differences in the effect of CPAP on renal hemodynamics and the renal RAS in OSA. Twenty-nine Na+-replete, otherwise healthy study participants with OSA (10 women and 19 men) with nocturnal hypoxemia were studied pre- and post-CPAP (>4 h/night for 4 wk). Renal hemodynamics [renal plasma flow (RPF), glomerular filtration rate (GFR), and filtration fraction(FF)] were measured at baseline and in response to ANG II challenge, as a marker of renal RAS activity, pre- and post-CPAP therapy for 1 mo. In women, CPAP was associated with increased RPF (626 ± 22 vs. 718 ± 43 mL/min, P = 0.007, pre- vs. post-CPAP), maintained GFR (108 ± 2 vs. 105 ± 3 mL/min, P = 0.8), and reduced FF (17.4 ± 0.8% vs. 15.0 ± 0.7%, P = 0.017). In men, CPAP was associated with maintained RPF (710 ± 37 vs. 756 ± 38 mL/min, P = 0.1), maintained GFR (124 ± 8 vs. 113 ± 6 mL/min, P = 0.055), and reduced FF (18.6 ± 1.7% vs. 15.5 ± 1.1%, P = 0.035). Pre-CPAP, there were no sex differences in renal hemodynamic responses to ANG II. CPAP use was associated with a greater renovasoconstrictive response to ANG II in women (RPF at Δ30 min: −100 ± 27 vs. −161 ± 25 mL/min, P = 0.007, and RPF at Δ60 min: −138 ± 27 vs. −206 ± 32 mL/min, P = 0.007) but not men. CPAP use was associated with improved renal hemodynamics in both sexes and downregulated renal RAS activity in women but not men.


2001 ◽  
Vol 280 (3) ◽  
pp. R807-R813 ◽  
Author(s):  
Amrit K. Kang ◽  
John A. Duncan ◽  
Daniel C. Cattran ◽  
John S. Floras ◽  
Vesta Lai ◽  
...  

We examined the effect of oral contraceptive (OC) usage on the renin angiotensin system (RAS) in two related experiments. In the first experiment, subjects were 34 healthy, normotensive, premenopausal women, 15 OC users and 19 OC nonusers, mean age 25 ± 1 yr, ingesting a controlled sodium diet. We assessed arterial pressure, glomerular filtration rate, effective renal plasma flow, renal vascular resistance (RVR), and filtration fraction (FF) using inulin and p-aminohippurate clearance techniques, both at baseline and in response to the ANG II receptor blocker losartan. In the second experiment, in similar subjects, 10 OC users and 10 nonusers, we examined circulating RAS components [angiotensinogen, ANG II, aldosterone, plasma renin activity (PRA), and active renin] in response to incremental lower body negative pressure (LBNP), to determine whether renin secretion is suppressed by OC usage. OC users exhibited elevations in systolic blood pressure, RVR, and FF compared with nonusers, which were partially corrected by losartan. In the LBNP phase of the study, baseline measures of PRA, angiotensinogen, ANG II, and aldosterone were all increased in the OC group compared with the control group. Active renin levels did not differ between groups. Incremental LBNP resulted in increased circulating levels of RAS components in both groups. We conclude that the RAS is activated in women using OCs. There was no evidence that decreases in renin secretion result in normalization of the RAS as a whole.


1993 ◽  
Vol 74 (3) ◽  
pp. 1220-1228 ◽  
Author(s):  
P. J. Ohtake ◽  
J. K. Walker ◽  
D. B. Jennings

We reported that intravenous infusion of angiotensin II (ANG II) stimulated ventilation (VE) in conscious dogs. Other studies in our laboratory have demonstrated that increases in respiration occurred in association with activation of the renin-angiotensin system during acute hypotension and during hypercapnia. Therefore, in conscious dogs (n = 5), we examined the effects of ANG II receptor blockade with intravenous saralasin (0.5 micrograms.kg-1.min-1) on respiratory responses during progressive nitroprusside-induced hypotension and during the ventilatory response to increased inspired fraction of CO2 (VRC). During hypotension (mean arterial pressure decreased approximately 20%) combined with ANG II receptor blockade, VE, heart rate, and arginine vasopressin increases were attenuated compared within unblocked studies. With ANG II receptor blockade during hypotension, alveolar ventilation and arterial PCO2 (PaCO2) were unchanged, which contrasted with a doubling of alveolar ventilation and a decrease of 4.8 +/- 1 Torr in PaCO2 in unblocked studies. During hypercapnia, the slope of the VRC was not affected by ANG II receptor blockade, but with 6.5% inspired CO2 fraction, VE and PaCO2 were lower than in unblocked studies. These results indicated that ANG II contributed to the respiratory response to a modest hypotension but did not affect respiratory sensitivity to CO2.


1990 ◽  
Vol 258 (3) ◽  
pp. F522-F529 ◽  
Author(s):  
H. M. Siragy ◽  
N. L. Howell ◽  
M. J. Peach ◽  
R. M. Carey

We produced maximal or near-maximal acute intrarenal blockade of the renin-angiotensin system (RAS) by combining inhibitors. Intrarenal infusion of the renin inhibitor, ACRIP, the converting enzyme inhibitor, teprotide, and saralasin were administered individually or combined in random order. The inhibitors were infused for 20 min in doses that did not produce systemic effects in uninephrectomized conscious dogs in sodium balance at 10 meq/day. Significant increases in urine flow rate (UV; F = 97, P less than 0.0001), urinary sodium excretion (UNaV; F = 220, P less than 0.0001), glomerular filtration rate (GFR; F = 64, P less than 0.0001), and renal plasma flow (RPF; F = 108, P less than 0.0001) were observed with each blocker, whether alone or in combination except that ACRIP alone did not alter GFR or RPF. The increase in renal function was related to the number of blockers (3 greater than 2 greater than 1). With the three blockers combined UV increased approximately sixfold (from 0.5 +/- 0.06 to 2.9 +/- 0.03 ml/min), UNaV approximately 10-fold (from 3 +/- 0.4 to 34 +/- 2.8 mueq/min), GFR from 31 +/- 2 to 49 +/- 2 ml/min, RPF from 59 +/- 1 to 120 +/- 4 ml/min, and fractional excretion of sodium from 0.06 +/- 0.01 to 0.5 +/- 0.4% (all P less than 0.001). These changes did not occur where the inhibitors were infused systemically and the changes during intrarenal blocker administration were blocked completely with co-administration of angiotensin II intrarenally. The intrarenal RAS is a potent physiological regulator of renal function.(ABSTRACT TRUNCATED AT 250 WORDS)


2011 ◽  
Vol 167 (2) ◽  
pp. e63-e69 ◽  
Author(s):  
Viachaslau Barodka ◽  
Scott Silvestry ◽  
Ning Zhao ◽  
Xiangyin Jiao ◽  
David J. Whellan ◽  
...  

2017 ◽  
Vol 312 (5) ◽  
pp. H968-H979 ◽  
Author(s):  
Neeru M. Sharma ◽  
Shyam S. Nandi ◽  
Hong Zheng ◽  
Paras K. Mishra ◽  
Kaushik P. Patel

An activated renin-angiotensin system (RAS) within the central nervous system has been implicated in sympathoexcitation during various disease conditions including congestive heart failure (CHF). In particular, activation of the RAS in the paraventricular nucleus (PVN) of the hypothalamus has been recognized to augment sympathoexcitation in CHF. We observed a 2.6-fold increase in angiotensinogen (AGT) in the PVN of CHF. To elucidate the molecular mechanism for increased expression of AGT, we performed in silico analysis of the 3′-untranslated region (3′-UTR) of AGT and found a potential binding site for microRNA (miR)-133a. We hypothesized that decreased miR-133a might contribute to increased AGT in the PVN of CHF rats. Overexpression of miR-133a in NG108 cells resulted in 1.4- and 1.5-fold decreases in AGT and angiotensin type II (ANG II) type 1 receptor (AT1R) mRNA levels, respectively. A luciferase reporter assay performed on NG108 cells confirmed miR-133a binding to the 3′-UTR of AGT. Consistent with these in vitro data, we observed a 1.9-fold decrease in miR-133a expression with a concomitant increase in AGT and AT1R expression within the PVN of CHF rats. Furthermore, restoring the levels of miR-133a within the PVN of CHF rats with viral transduction resulted in a significant reduction of AGT (1.4-fold) and AT1R (1.5-fold) levels with a concomitant decrease in basal renal sympathetic nerve activity (RSNA). Restoration of miR-133a also abrogated the enhanced RSNA responses to microinjected ANG II within the PVN of CHF rats. These results reveal a novel and potentially unique role for miR-133a in the regulation of ANG II within the PVN of CHF rats, which may potentially contribute to the commonly observed sympathoexcitation in CHF. NEW & NOTEWORTHY Angiotensinogen (AGT) expression is upregulated in the paraventricular nucleus of the hypothalamus through posttranscriptional mechanism interceded by microRNA-133a in heart failure. Understanding the mechanism of increased expression of AGT in pathological conditions leading to increased sympathoexcitation may provide the basis for the possible development of new therapeutic agents with enhanced specificity.


Endocrinology ◽  
2007 ◽  
Vol 148 (5) ◽  
pp. 2453-2457 ◽  
Author(s):  
Shigeyuki Wakahara ◽  
Tadashi Konoshita ◽  
Shinichi Mizuno ◽  
Makoto Motomura ◽  
Chikako Aoyama ◽  
...  

Angiotensin-converting enzyme (ACE) 2, a newly emerging component of the renin-angiotensin system, is presumed to be a counterregulator against ACE in generating and degrading angiotensin II. It remains to be elucidated how mRNA levels of these two genes are quantitatively regulated in the kidney and also what kind of clinicopathological characteristics could influence the gene expressions in humans. Seventy-eight cases of biopsy-proven renal conditions were examined in detail. Total RNA from a small part of each renal cortical biopsy specimen was reverse transcribed, and the resultant cDNA was amplified for ACE, ACE2, and glyceraldehyde-3-phosphate dehydrogenase with a real-time PCR system. Then we investigated the relationship between clinicopathological variables and mRNA levels adjusted for glyceraldehyde-3-phosphate dehydrogenase. Statistically significant correlation was not observed between any clinicopathological variables and either of the gene expressions by pairwise comparison. However, a strong correlation was observed between the gene expressions of ACE and those of ACE2. Moreover, the ACE to ACE2 ratio was significantly higher in subjects with hypertension (HT) than that in subjects without HT. Whereas parameters of renal function, e.g. urinary protein excretion (UPE) and creatinine clearance (Ccr), are not significantly related to the ACE to ACE2 ratio as a whole, the HT status may reflect disease-induced deterioration of renal function. That is, UPE and Ccr of subjects with HT are significantly different from those without HT, in which a significant correlation is also observed between UPE and Ccr. Finally, stepwise regression analysis further revealed that only the HT status is an independent confounding determinant of the ACE to ACE2 ratio among the variables tested. Our data suggest that ACE2 might play an important role in maintaining a balanced status of local renin-angiotensin system synergistically with ACE by counterregulatory effects confounded by the presence of hypertension. Thus, ACE2 may exert pivotal effects on cardiovascular and renal conditions.


Sign in / Sign up

Export Citation Format

Share Document