Vasodilation elicited by liposomal VIP is unimpeded by anti-VIP antibody in hamster cheek pouch

1998 ◽  
Vol 275 (1) ◽  
pp. R56-R62 ◽  
Author(s):  
Hiroyuki Ikezaki ◽  
Sudhir Paul ◽  
Hayat Alkan-Önyüksel ◽  
Manisha Patel ◽  
Xiao-Pei Gao ◽  
...  

The purpose of this study was to determine whether a monoclonal anti-vasoactive intestinal peptide (VIP) antibody, which binds VIP with high affinity and specificity and catalyzes cleavage of the peptide in vitro, attenuates VIP vasorelaxation in vivo and, if so, whether insertion of VIP on the surface of sterically stabilized liposomes (SSL), which protects the peptide from trypsin- and plasma-catalyzed cleavage in vitro, curtails this response. Using intravital microscopy, we found that suffusion of monoclonal anti-VIP antibody (clone c23.5, IgG2ak), but not of nonimmune antibody (myeloma cell line UPC10, IgG2ak) or empty SSL, significantly attenuates VIP-induced vasodilation in the in situ hamster cheek pouch ( P < 0.05). By contrast, anti-VIP antibody has no significant effects on vasodilation elicited by isoproterenol, nitroglycerin, and calcium ionophore A-23187, agonists that activate intracellular effector systems in blood vessels that mediate, in part, VIP vasoreactivity. Suffusion of VIP on SSL, but not of empty SSL, restores the vasorelaxant effects of VIP in the presence of anti-VIP antibody. Collectively, these data suggest that VIP catalysis by high affinity and specific VIP autoantibodies displaying protease-like activity constitutes a novel mechanism whereby VIP vasoreactivity is regulated in vivo.

1998 ◽  
Vol 275 (2) ◽  
pp. R588-R595
Author(s):  
Hiroyuki Ikezaki ◽  
Hayat Önyüksel ◽  
Israel Rubinstein

The purpose of this study was to determine whether vasoactive intestinal peptide (VIP) modulates vasoconstriction elicited by phenylephrine and ANG II in vivo and, if so, to begin to elucidate the mechanisms underlying this phenomenon. Using intravital microscopy, we found that suffusion of phenylephrine and ANG II elicits significant vasoconstriction in the in situ hamster cheek pouch that is potentiated by VIP-(10—28), a VIP receptor antagonist, but not by VIP-(1—12) ( P< 0.05). Aqueous VIP has no significant effects on phenylephrine- and ANG II-induced vasoconstriction. However, VIP on sterically stabilized liposomes (SSL), a formulation where VIP assumes a predominantly α-helix conformation, significantly attenuates this response. Maximal effect is observed within 30 min and is no longer seen after 60 min. Empty SSL are inactive. Indomethacin has no significant effects on responses induced by VIP on SSL. The vasodilators ACh, nitroglycerin, calcium ionophore A-23187, 8-bromo-cAMP, and isoproterenol have no significant effects on phenylephrine- and ANG II-induced vasoconstriction. Collectively, these data suggest that vasoconstriction modulates VIP release in the in situ hamster cheek pouch and that α-helix VIP opposes α-adrenergic- and ANG II-induced vasoconstriction in this organ in a reversible, prostaglandin-, NO-, cGMP-, and cAMP-independent fashion.


1999 ◽  
Vol 276 (5) ◽  
pp. R1359-R1365 ◽  
Author(s):  
Hiroyuki Ikezaki ◽  
Manisha Patel ◽  
Hayat Önyüksel ◽  
Syed R. Akhter ◽  
Xiao-Pei Gao ◽  
...  

The purpose of this study was to determine whether exogenous calmodulin potentiates vasoactive intestinal peptide (VIP)-induced vasodilation in vivo and, if so, whether this response is amplified by association of VIP with sterically stabilized liposomes. Using intravital microscopy, we found that calmodulin suffused together with aqueous and liposomal VIP did not potentiate vasodilation elicited by VIP in the in situ hamster cheek pouch. However, preincubation of calmodulin with liposomal, but not aqueous, VIP for 1 and 2 h and overnight at 4°C before suffusion significantly potentiated vasodilation ( P < 0.05). Calmodulin-induced responses were significantly attenuated by calmidazolium, trifluoperazine, and N G-nitro-l-arginine methyl ester (l-NAME) but notd-NAME. The effects ofl-NAME were reversed byl- but notd-arginine. Indomethacin had no significant effects on calmodulin-induced responses. Calmodulin had no significant effects on adenosine-, isoproterenol-, acetylcholine-, and calcium ionophore A-23187-induced vasodilation. Collectively, these data indicate that exogenous calmodulin amplifies vasodilation elicited by phospholipid-associated, but not aqueous, VIP in the in situ peripheral microcirculation in a specific, calmodulin active sites-, and nitric oxide-dependent fashion. We suggest that extracellular calmodulin, phospholipids, and VIP form a novel functionally coordinated class of endogenous vasodilators.


1997 ◽  
Vol 272 (6) ◽  
pp. H2895-H2901 ◽  
Author(s):  
R. J. Rivers

Conducted vasodilation occurs remotely from a site of microapplication of a drug. Intravascular pressure is required for a conducted response in vivo, yet in vitro studies in unpressurized arterioles show pressure is not essential. To determine how pressure affects conducted vasodilation, intra-arteriolar pressure was controlled within an in situ isolated segment (average length 950 +/- 96 microns, average baseline diameter 28 +/- 2.1 microns) of arterioles in the hamster cheek pouch. Methacholine (10(-4) M, 5 s) was microapplied either onto the isolated segment or remotely, with local and conducted vasodilation measured at both locations. Increasing pressure in the lumen of the segment (0-80 cmH2O) increased the segment local dilation to methacholine, and the segment-conducted dilation plateaued (at 4.1 +/- 0.8 micron) when segment pressure reached 20 cmH2O. Any local (16 +/- 1.5 microns) and conducted (4.4 +/- 1.3 microns) dilations viewed outside the segment were unaffected by segment pressure and persisted in its absence. Thus segment pressure affected only electromechanical transduction of the conducted response. Thus vasomotor signals move throughout the vasculature regardless of tone, but tone is essential to transduce the response.


1997 ◽  
Vol 273 (1) ◽  
pp. R287-R292 ◽  
Author(s):  
F. Sejourne ◽  
H. Suzuki ◽  
H. Alkan-Onyuksel ◽  
X. P. Gao ◽  
H. Ikezaki ◽  
...  

The purpose of this study was to begin to determine the mechanisms underlying vasodilation elicited by vasoactive intestinal peptide (VIP) in sterically stabilized liposomes (SSL) in the in situ peripheral microcirculation. Using intravital microscopy, we found that suffusion of VIP in SSL (0.42 and 0.85 nmol) onto the hamster cheek pouch for 1 h elicited significant and prolonged concentration-dependent vasodilation (P < 0.05). Suffusion of VIP in SSL (0.1 nmol) for 7 min elicited a qualitatively similar response, although its magnitude was significantly smaller than that elicited by 1 h of suffusion of VIP in SSL (P < 0.05). The VIP-receptor antagonist VIP-(10-28), but not the amino-terminal fragment VIP-(1-12), significantly attenuated and delayed the onset of VIP in SSL-induced vasodilation (P < 0.05). The nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), but not NG-nitro-D-arginine methyl ester (D-NAME), abrogated VIP in SSL-induced responses. We conclude that VIP in SSL elicits significant and prolonged vasodilation in the in situ peripheral microcirculation, which is specific, partly receptor dependent, and partly transduced by the L-arginine/NO biosynthetic pathway.


1998 ◽  
Vol 274 (1) ◽  
pp. R237-R242
Author(s):  
Xiao-Pei Gao

The purpose of this study was to determine whether tannic acid elicits neurogenic plasma exudation from the oral mucosa in vivo and, if so, whether this response is transduced in part by thel-arginine-nitric oxide (NO) biosynthetic pathway. Using intravital microscopy, we found that suffusion of tannic acid elicits significant concentration-dependent leaky site formation and increase in clearance of fluorescein isothiocyanate-dextran (molecular mass 70 kDa) from the in situ hamster cheek pouch ( P < 0.05). These effects are significantly attenuated by two selective, but structurally distinct, nonpeptide neurokinin-1 (NK1) receptor antagonists, CP-96,345 and RP-67580, but not by CP-96,344, the 2R,3R enantiomer of CP-96,345. N G-nitrol-arginine methyl ester (l-NAME), an NO synthase inhibitor, but notd-NAME, significantly attenuates tannic acid-induced responses.l-Arginine, but notd-arginine, reverses the attenuating effects of l-NAME. We conclude that tannic acid elicitsl-arginine-NO biosynthetic pathway-dependent neurogenic plasma exudation from the in situ hamster cheek pouch.


1999 ◽  
Vol 87 (2) ◽  
pp. 619-625 ◽  
Author(s):  
Xiao-Pei Gao ◽  
Syed R. Akhter ◽  
Hiroyuki Ikezaki ◽  
Dennis Hong ◽  
Israel Rubinstein

The purpose of this study was to determine whether dexamethasone attenuates the acute increase in macromolecular efflux from the oral mucosa elicited by an aqueous extract of smokeless tobacco (STE) in vivo, and, if so, whether this response is specific. Using intravital microscopy, we found that 20-min suffusion of STE elicited significant, concentration-related leaky site formation and an increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass 70 kDa) from the in situ hamster cheek pouch ( P < 0.05). This response was significantly attenuated by dexamethasone (10 mg/kg iv). Dexamethasone also attenuated the bradykinin-induced leaky site formation and the increase in clearance of FITC-dextran from the cheek pouch. However, it had no significant effects on adenosine-induced responses. Dexamethasone had no significant effects on baseline arteriolar diameter and on bradykinin-induced vasodilation in the cheek pouch. Collectively, these data indicate that dexamethasone attenuates, in a specific fashion, the acute increase in macromolecular efflux from the in situ oral mucosa evoked by short-term suffusion of STE. We suggest that corticosteroids mitigate acute oral mucosa inflammation elicited by smokeless tobacco.


1996 ◽  
Vol 270 (6) ◽  
pp. H2216-H2227 ◽  
Author(s):  
J. M. Beach ◽  
E. D. McGahren ◽  
J. Xia ◽  
B. R. Duling

A fluorescence ratio technique based on the voltage-sensitive dye 1-(3-sulfonatopropyl)-8-[beta-[2-di-n-butylamino)-6-naphythyl++ +]vinyl] pyridinium betaine (di-8-ANEPPS)has been developed for recording membrane potential changes during vascular responses of arterioles. Perfusion of hamster cheek pouch arterioles with the dye labeled the endothelial cell layer. voltage responses from the endothelium of intact arterioles were determined by analysis of voltage-induced shifts in fluorescence emission wavelengths from dye spectra imaged from the vessel wall. Membrane depolarization caused the dye spectrum to shift toward blue wavelengths, with maximal fluorescence changes near 560 and 620 nm. In isolated nonperfused arterioles, comparison of continuous dual-wavelength recordings with simultaneous microelectrode recordings showed that the ratio of fluorescence intensities (fluorescence at 620 nm to fluorescence at 560 nm) accurately followed changes in membrane potential (6–21 mV) during vasoconstriction. The dye response was linear with respect to potential changes from -56 to -6 mV, with a voltage sensitivity of 9.7% change in the ratio per 100 mV. Membrane potential responses from in vitro and in vivo arterioles after potassium stimulation consisted of rapid ( < 0.5 -s) depolarization followed by slow repolarization over several seconds. Potassium-induced depolarizations were conducted along arterioles, and the values of the electrical length constant for conducted depolarization determined by optical and microelectrode methods were in agreement. We conclude that ratio analysis of di-8-ANEPPS fluorescence emission can be used to accurately record membrane potential changes on the time scale of seconds during vasomotor activity from arterioles.


1987 ◽  
Vol 10 (4) ◽  
pp. 180-187 ◽  
Author(s):  
YUJI KUROSAKI ◽  
SHINICHI HISAICHI ◽  
CHIEKO HAMADA ◽  
TAIJI NAKAYAMA ◽  
TOSHIKIRO KIMURA

1990 ◽  
Vol 259 (2) ◽  
pp. H574-H581 ◽  
Author(s):  
M. J. Lew ◽  
B. R. Duling

The endothelium of the hamster cheek pouch arteriole in vitro is able to greatly reduce the potency of luminally applied water-soluble drugs by acting as a barrier to diffusion from the lumen to the smooth muscle [Lew, Rivers, and Duling. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H10-H16, 1989]. Lipid-soluble drugs appear unaffected by the diffusion barrier, presumably because their ability to cross cell membranes allows them to freely cross the endothelium. We compared the effects of two alpha 1-adrenoceptor agonists, phenylephrine (water soluble) and SKF 89748A (lipid soluble), on systemic blood pressure and the arterioles of the hamster cheek pouch in vivo. Both agonists were able to activate the arterioles when applied topically to the outside of the arterioles (extraluminal application). The agonists were also injected as a brief bolus into the aortic arch at doses chosen to elicit similar peak pressor responses. At all levels of pressor response, the arteriolar responses to phenylephrine were smaller than those to SKF 89748A. In the cremasteric vasculature SKF 89748A was similarly found to be more effective in activating the arterioles after intravascular administration than was phenylephrine. We conclude that an intramural diffusion barrier exists in the arteriolar wall in vivo and that it can influence vascular reactivity.


1977 ◽  
Author(s):  
J. Westwick ◽  
G.P. Lewis

Arachidonic acid (AA) and prostaglandin (PG) G2 have been shown to he precursors of both pro-aggregatory and anti-aggregatory agents in vitro. If PGG2 is produced in thrombotic and inflammatory situations, it is important to know its effects on thrombus formation in vivo. Mural thrombus formation was induced in the arterioles (40-70 μm) of the hamster cheek pouch by combining micro-electrical damage with perivascular application of ADP (10-6M).PG or vehicle was applied perivascularly, followed 30 sec and 1 min later by electrical micro-damage and application of ADP (lOM). The vessel was observed and thrombus formation was quantitated by timing the adherence of thrombi for the following 10 nriruEach animal served as its own control and results were expressed as % difference (mean - s.e.) from control. PGGs, AA and PGE]_ produced a dose-related (12.5 - 1250 ng) inhibition (lO ± 8% - 90 ± 15%) of thrombus formation.Both PGG2 (Lewis, Vestwick & Williams, Br.J.Pharmac., 1977, in press) and AA induce a short-lasting vasoconstriction followed by vasodilatation. However, another potent vasodilator, PGE1, in a low Jose (125 ng) potentiated (49 - 20%) while high doses (1250 ng) produced a weak inhibition (15 ± 10%) of thrombus formation. PGD2 had little activity up to a concentration of I25O ng.These results demonstrate that AA and PGG2 can be converted to anti-thrombotic agents in vivo when applied perivascularly. Since PGD5 and PGE2 were not anti-thrombotic, it is possible that the observed effect was due to generation of prostacyclin.


Sign in / Sign up

Export Citation Format

Share Document