Renal blood flow, early distal sodium, and plasma renin concentrations during osmotic diuresis

2000 ◽  
Vol 279 (4) ◽  
pp. R1268-R1276 ◽  
Author(s):  
Paul P. Leyssac ◽  
Niels-Henrik Holstein-Rathlou ◽  
Ole Skøtt

Inconsistencies in previous reports regarding changes in early distal NaCl concentration (EDNaCl) and renin secretion during osmotic diuresis motivated our reinvestigation. After intravenous infusion of 10% mannitol, EDNaCl fell from 42.6 to 34.2 mM. Proximal tubular pressure increased by 12.6 mmHg. Urine flow increased 10-fold, and sodium excretion increased by 177%. Plasma renin concentration (PRC) increased by 58%. Renal blood flow and glomerular filtration rate decreased, however end-proximal flow remained unchanged. After a similar volume of hypotonic glucose (152 mM), EDNaClincreased by 3.6 mM, ( P < 0.01) without changes in renal hemodynamics, urine flow, sodium excretion rate, or PRC. Infusion of 300 μmol NaCl in a smaller volume caused EDNaCl to increase by 6.4 mM without significant changes in PRC. Urine flow and sodium excretion increased significantly. There was a significant inverse relationship between superficial nephron EDNaCl and PRC. We conclude that EDNa decreases during osmotic diuresis, suggesting that the increase in PRC was mediated by the macula densa. The results suggest that the natriuresis during osmotic diuresis is a result of impaired sodium reabsorption in distal tubules and collecting ducts.

2009 ◽  
Vol 296 (2) ◽  
pp. R265-R271 ◽  
Author(s):  
Michael W. Brands ◽  
Tracy D. Bell ◽  
Nancy A. Rodriquez ◽  
Praveen Polavarapu ◽  
Dmitriy Panteleyev

This study tested the hypothesis that inducing hyperinsulinemia and hyperglycemia in dogs, by infusing glucose chronically intravenously, would increase tubular sodium reabsorption and cause hypertension. Glucose was infused for 6 days (14 mg·kg−1·min−1 iv) in five uninephrectomized (UNX) dogs. Mean arterial pressure (MAP) and renal blood flow (RBF) were measured 18 h/day using DSI pressure units and Transonic flow probes, respectively. Urinary sodium excretion (UNaV) decreased significantly on day 1 and remained decreased over the 6 days, coupled with a significant, sustained increase in RBF, averaging ∼20% above control on day 6. Glomerular filtration rate and plasma renin activity (PRA) also increased. However, although MAP tended to increase, this was not statistically significant. Therefore, the glucose infusion was repeated in six dogs with 70% surgical reduction in kidney mass (RKM) and high salt intake. Blood glucose and plasma insulin increased similar to the UNX dogs, and there was significant sodium retention, but MAP still did not increase. Interestingly, the increases in PRA and RBF were prevented in the RKM dogs. The decrease in UNaV, increased RBF, and slightly elevated MAP show that glucose infusion in dogs caused a sustained increase in tubular sodium reabsorption by a mechanism independent of pressure natriuresis. The accompanying increase in PRA, together with the failure of either RBF or PRA to increase in the RKM dogs, suggests the site of tubular reabsorption was before the macula densa. However, the volume retention and peripheral edema suggest that systemic vasodilation offsets any potential renal actions to increase MAP in this experimental model in dogs.


2018 ◽  
Vol 314 (1) ◽  
pp. F70-F80 ◽  
Author(s):  
Weijian Shao ◽  
Carla B. Rosales ◽  
Camila Gonzalez ◽  
Minolfa C. Prieto ◽  
L. Gabriel Navar

Serelaxin is a novel recombinant human relaxin-2 that has been investigated for the treatment of acute heart failure. However, its effects on renal function, especially on the renal microcirculation, remain incompletely characterized. Our immunoexpression studies localized RXFP1 receptors on vascular smooth muscle cells and endothelial cells of afferent arterioles and on principal cells of collecting ducts. Clearance experiments were performed in male and female normotensive rats and Ang II-infused male rats. Serelaxin increased mean arterial pressure slightly and significantly increased renal blood flow, urine flow, and sodium excretion rate. Group analysis of all serelaxin infusion experiments showed significant increases in GFR. During infusion with subthreshold levels of Ang II, serelaxin did not alter mean arterial pressure, renal blood flow, GFR, urine flow, or sodium excretion rate. Heart rates were elevated during serelaxin infusion alone (37 ± 5%) and in Ang II-infused rats (14 ± 2%). In studies using the in vitro isolated juxtamedullary nephron preparation, superfusion with serelaxin alone (40 ng/ml) significantly dilated afferent arterioles (10.8 ± 1.2 vs. 13.5 ± 1.1 µm) and efferent arterioles (9.9 ± 0.9 vs. 11.9 ± 1.0 µm). During Ang II superfusion, serelaxin did not alter afferent or efferent arteriolar diameters. During NO synthase inhibition (l-NNA), afferent arterioles also did not show any vasodilation during serelaxin infusion. In conclusion, serelaxin increased overall renal blood flow, urine flow, GFR, and sodium excretion and dilated the afferent and efferent arterioles in control conditions, but these effects were attenuated or prevented in the presence of exogenous Ang II and NO synthase inhibitors.


1987 ◽  
Vol 65 (11) ◽  
pp. 2219-2224 ◽  
Author(s):  
J. Krayacich ◽  
R. L. Kline ◽  
P. F. Mercer

Denervation supersensitivity in chronically denervated kidneys increases renal responsiveness to increased plasma levels of norepinephrine. To determine whether this effect is caused by presynaptic (i.e., loss of uptake) or postsynaptic changes, we studied the effect of continuous infusion of norepinephrine (330 ng/min, i.v.) and methoxamine (4 μg/min, i.v.), an α1 adrenergic agonist that is not taken up by nerve terminals, on renal function of innervated and denervated kidneys. Ganglionic blockade was used to eliminate reflex adjustments in the innervated kidney and mean arterial pressure was maintained at preganglionic blockade levels by an infusion of arginine vasopressin. With renal perfusion pressure controlled there was a significantly greater decrease in renal blood flow (−67 ± 9 vs. −33 ± 8%), glomerular filtration rate (−60 ± 9 vs. −7 ± 20%), urine flow (−61 ± 7 vs. −24 ± 11%), sodium excretion (−51 ± 15 vs. −32 ± 21%), and fractional excretion of sodium (−50 ± 9 vs. −25 ± 15%) from the denervated kidneys compared with the innervated kidneys during the infusion of norepinephrine. During the infusion of methoxamine there was a significantly greater decrease from the denervated compared with the innervated kidneys in renal blood flow (−54 ± 10 vs. −30 ± 14%), glomerular filtration rate (−51 ± 11 vs. −19 ± 17%), urine flow (−55 ± 10 vs. −39 ± 10%), sodium excretion (−70 ± 9 vs. −59 ± 11%), and fractional excretion of sodium (−53 ± 10 vs. −41 ± 10%). These results suggest that vascular and tubular supersensitivity to norepinephrine in chronically denervated kidneys is due to postsynaptic changes involving α1-adrenergic receptors.


1989 ◽  
Vol 256 (4) ◽  
pp. F524-F531 ◽  
Author(s):  
S. F. Echtenkamp ◽  
P. F. Dandridge

Neuropeptide Y (NPY) is a potent vasoconstrictor peptide contained in sympathetic nerve terminals and is co-released with norepinephrine. Previous studies in the rat have suggested that NPY influences renal sodium reabsorption and renin release. However, little is known about the physiological effects of NPY on the kidney in the human. In the present study NPY was infused intravenously and directly into the renal artery of the primate Macaca fascicularis, an experimental model of the human. Intravenous NPY infusion at doses of 20-1,000 ng.kg-1.min-1 produced dose-dependent rises in renal vascular resistance with minimal changes in arterial pressure. Urine flow and sodium excretion were changed significantly only at doses of NPY that significantly reduced renal blood flow and filtration rate. Arterial plasma renin activity and renin secretion rate were not significantly altered at any dose of NPY. Intrarenal infusion of NPY at doses of 20-400 ng.kg-1.min-1 produced potent dose-dependent renal vasoconstriction with minimal changes in arterial pressure. Under these conditions sodium excretion was significantly reduced concurrent with decreases in renal blood flow and glomerular filtration rate. However, no significant changes in arterial plasma renin activity or renin secretion rate were found at any dose of NPY. These data indicate that in the nonhuman primate NPY is a potent renal vasoconstrictor agent that has variable effects on renal excretory and secretory function, which may be secondary to its vasoconstrictor actions.


1992 ◽  
Vol 263 (5) ◽  
pp. R1064-R1070 ◽  
Author(s):  
S. Lu ◽  
R. J. Roman ◽  
D. L. Mattson ◽  
A. W. Cowley

The role of renal papillary blood flow in regulation of fluid and electrolyte excretion was examined. The effects of an acute infusion of diltiazem (5 micrograms.kg-1 x min-1) into the renal medullary interstitium on papillary blood flow and sodium and water excretion were studied. Changes of renal blood flow were measured using an electromagnetic flow probe. Cortical and papillary blood flows were measured using laser-Doppler flowmetry. Renal and cortical blood flows were unchanged during medullary interstitial infusion of diltiazem, but papillary blood flow increased 26% (P < 0.05) and remained elevated for 1 h after diltiazem infusion was discontinued. Glomerular filtration rate (GFR) of the infused kidney increased by 21% from a control of 1.0 +/- 0.1 ml.min-1 x g-1 during infusion of diltiazem (P < 0.05), but it returned to control after diltiazem infusion was stopped. Urine flow and sodium excretion increased by 70% (P < 0.05), and fractional sodium excretion rose from 1.5 +/- 0.2 to 2.4 +/- 0.3% of the filtered load during the hour after diltiazem infusion. Renal blood flow, cortical and papillary blood flow, GFR, urine flow, and sodium excretion in the 0.9% sodium chloride vehicle-infused kidney were not significantly altered during the experiment. Intravenous infusion of the same dose of diltiazem (5 micrograms.kg-1 x min-1) increased GFR by 22%, but had no effect on urine flow and sodium excretion. These results indicate that renal medullary interstitial infusion of diltiazem selectively increased renal papillary blood flow, which was associated with an increase of sodium and water excretion.


1998 ◽  
Vol 274 (5) ◽  
pp. F940-F945 ◽  
Author(s):  
Ludek Cervenka ◽  
Chi-Tarng Wang ◽  
L. Gabriel Navar

Experiments were performed on normal anesthetized rats to determine the effects of candesartan, a novel AT1 receptor antagonist, on the arterial pressure and renal hemodynamic responses to bolus doses of angiotensin II (ANG II) and on renal hemodynamics and sodium excretion. Control arterial pressure responses to bolus ANG II doses of 10, 50, 100 and 1,000 ng were 26 ± 6, 54 ± 7, 57 ± 7, and 79 ± 7 mmHg; the decreases in cortical renal blood flow (CRBF), measured with laser-Doppler flowmetry, were 47 ± 9, 64 ± 8, 71 ± 6, and 82 ± 6%. The vasoconstrictor responses to ANG II up to 1,000 ng were completely blocked by candesartan doses of 1 and 0.1 mg/kg, whereas treatment with 0.01 mg/kg candesartan attenuated the arterial pressure and CRBF responses. The higher doses of candesartan (1 and 0.1 mg/kg) elicited rapid decreases in arterial pressure, leading to associated decreases in sodium excretion. Renal blood flow (RBF), glomerular filtration rate (GFR), and urine flow also decreased following treatment with candesartan at 1 mg/kg. In contrast, when candesartan was given at 0.01 mg/kg, which did not decrease arterial pressure significantly, there were significant increases in GFR (16 ± 4), RBF (9 ± 2), urine flow (11 ± 2), sodium excretion (35 ± 7), and fractional sodium excretion (39 ± 8%). The inability to overcome blockade, even with very high ANG II doses, indicates that candesartan is a potent noncompetitive blocker of ANG II pressor and renal vasoconstrictor effects. The lower candesartan dose that did not cause significant hypotension elicited substantial increases in RBF, GFR, and sodium excretion, revealing the direct renal vasodilator and natriuretic effects of AT1 receptor blockade.


1979 ◽  
Vol 237 (3) ◽  
pp. F182-F187
Author(s):  
M. C. Blasingham ◽  
A. Nasjletti

To study the effects of stimulation of renal prostaglandin biosynthesis by bradykinin, we assessed the changes in renal functions induced by intrarenal infusion of bradykinin (10 ng . min-1 . kg-1) in the dog anesthetized with pentobarbital before and during inhibition of prostaglandin synthesis by sodium meclofenamate (5 mg/kg). Before meclofenamate administration, bradykinin augmented the urinary output of a "PGE"-like substance from 1.00 +/- 0.25 to 3.88 +/- 1.09 ng/min (P less than 0.05) and increased renal blood flow by 65 +/- 9 ml/min (P less than 0.001), urine flow by 0.55 +/- 0.23 ml/min (P less than 0.05), and sodium excretion by 64.8 +/- 18.0 mueq/min (P less than 0.01). Administration of meclofenamate did not affect the bradykinin-induced increase in renal blood flow and urine volume, but suppressed the evoked output of "PGE" and reduced the associated natriuresis, i.e., sodium excretion increased by only 11.1 +/- 4.8 mueq/min (P greater than 0.05). In contrast, meclofenamate did not affect the natriuresis effected by an equidilator dose of PGE2 (5 ng . min-1 . kg-1) infused intrarenally. These observations suggest that a product of prostaglandin synthetase produced by the kidney during intrarenal infusion of bradykinin contributes to the natriuretic action of the peptide.


1984 ◽  
Vol 246 (1) ◽  
pp. F67-F77 ◽  
Author(s):  
U. C. Kopp ◽  
L. A. Olson ◽  
G. F. DiBona

The renal functional effects of renal mechano- (MR) and chemoreceptor (CR) stimulation were examined in dogs and rats. In dogs increasing ureteral pressure (increases UP) increased ipsilateral (ipsi) renal blood flow and renin secretion rate, decreased contralateral (contra) renal blood flow, but did not affect contra renal excretion or renin secretion rate. Increasing renal venous pressure (increases RVP) increased ipsi renin secretion rate but did not affect contra renal function. Retrograde ureteropelvic perfusion with 0.9 M NaCl at unchanged UP did not affect either ipsi or contra renal function. In rats,increases UP and retrograde ureteropelvic perfusion with 0.9 M NaCl at unchanged UP did not affect mean arterial pressure, heart rate, contra renal blood flow, or glomerular filtration rate but increased contra urine flow rate and urinary sodium excretion. Increasing ureteral pressure with 0.1 M NaCl increased contra urine flow rate and urinary sodium excretion, whereas retrograde ureteropelvic perfusion with 0.1 M NaCl was without effect. Thus increases UP and retrograde ureteropelvic perfusion with 0.9 M NaCl stimulated renal MR and CR, respectively. The contra diuretic and natriuretic responses to renal MR and CR stimulation were abolished by either ipsi or contra renal denervation. Renal MR and CR stimulation increased ipsi afferent renal nerve activity (RNA) and decreased contra efferent RNA. These results indicate that in dogs renal MR stimulation results in a modest contralateral excitatory renorenal reflex, whereas in rats renal MR and CR stimulation produce a contralateral inhibitory renorenal reflex.


1989 ◽  
Vol 256 (1) ◽  
pp. R86-R90 ◽  
Author(s):  
J. M. Gonzalez-Campoy ◽  
J. Kachelski ◽  
J. C. Burnett ◽  
J. C. Romero ◽  
J. P. Granger ◽  
...  

The response of the proximal tubule to chronic aldosterone administration (15 micrograms.kg-1.day-1) was evaluated in eight conscious female mongrel dogs. Temporal profiles between hemodynamic and hormonal changes and the fractional excretions of sodium and lithium were established. Aldosterone infusion resulted in a significant decrease in urinary sodium excretion from 9.2 +/- 1.3 to 5.8 +/- 0.9 meq/h after 1 day, returning to normal by the 5th day. These changes in urinary sodium excretion were associated with significant elevations of the mean arterial pressure (MAP) from 105 +/- 5 to 111 +/- 6 mmHg and plasma atrial natriuretic factor concentrations (ANF) from 30 +/- 2 to 57 +/- 7 pg/ml beginning the 1st day of infusion. Plasma renin activity (PRA), on the other hand, was depressed by aldosterone, falling below the level of detectability. The fractional excretion of lithium increased significantly by day 2 of aldosterone infusion (from 29 +/- 3 to 44 +/- 6%), reflecting the proximal tubular response to the above changes. We conclude that the proximal tubule responds to increases in MAP and ANF and decreases in PRA during aldosterone infusion by decreasing sodium reabsorption. Subsequent nephron segments must also respond to the volume expansion produced by aldosterone, since the sustained proximal tubule natriuretic response is insufficient to explain all of escape.


1988 ◽  
Vol 254 (2) ◽  
pp. R325-R330 ◽  
Author(s):  
J. P. Porter

Studies employing direct electrical stimulation of the renal nerves have shown that, depending on the frequency used, selective effects on renal function can be evoked. With low frequencies, an increase in renin secretion can be elicited without affecting glomerular filtration rate, sodium excretion, or renal blood flow. In the present investigation the possibility was addressed that the central nervous system (CNS) is also organized to evoke selective changes in renal function. The paraventricular nucleus (PVN) of the hypothalamus was electrically stimulated in conscious rats with 150 microA and frequencies of 2.5, 5, 10, and 15 Hz. Blood samples for determination of plasma renin activity (PRA) were collected before and at the end of each 5-min stimulation period. The lower frequencies had no effect on PRA, but stimulation with 10 and 15 Hz produced a significant increase. This effect on PRA was not accompanied by changes in arterial pressure or renal blood flow. In a separate group of animals, stimulation of the PVN with 15 Hz produced a marked decrease in urine volume, but sodium excretion did not change. These data raise the possibility that the CNS is organized to evoke selective increases in sympathetic outflow to the kidney and to produce separate changes in renal functions.


Sign in / Sign up

Export Citation Format

Share Document