scholarly journals Chronic glucose infusion causes sustained increases in tubular sodium reabsorption and renal blood flow in dogs

2009 ◽  
Vol 296 (2) ◽  
pp. R265-R271 ◽  
Author(s):  
Michael W. Brands ◽  
Tracy D. Bell ◽  
Nancy A. Rodriquez ◽  
Praveen Polavarapu ◽  
Dmitriy Panteleyev

This study tested the hypothesis that inducing hyperinsulinemia and hyperglycemia in dogs, by infusing glucose chronically intravenously, would increase tubular sodium reabsorption and cause hypertension. Glucose was infused for 6 days (14 mg·kg−1·min−1 iv) in five uninephrectomized (UNX) dogs. Mean arterial pressure (MAP) and renal blood flow (RBF) were measured 18 h/day using DSI pressure units and Transonic flow probes, respectively. Urinary sodium excretion (UNaV) decreased significantly on day 1 and remained decreased over the 6 days, coupled with a significant, sustained increase in RBF, averaging ∼20% above control on day 6. Glomerular filtration rate and plasma renin activity (PRA) also increased. However, although MAP tended to increase, this was not statistically significant. Therefore, the glucose infusion was repeated in six dogs with 70% surgical reduction in kidney mass (RKM) and high salt intake. Blood glucose and plasma insulin increased similar to the UNX dogs, and there was significant sodium retention, but MAP still did not increase. Interestingly, the increases in PRA and RBF were prevented in the RKM dogs. The decrease in UNaV, increased RBF, and slightly elevated MAP show that glucose infusion in dogs caused a sustained increase in tubular sodium reabsorption by a mechanism independent of pressure natriuresis. The accompanying increase in PRA, together with the failure of either RBF or PRA to increase in the RKM dogs, suggests the site of tubular reabsorption was before the macula densa. However, the volume retention and peripheral edema suggest that systemic vasodilation offsets any potential renal actions to increase MAP in this experimental model in dogs.

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Michael W. Brands ◽  
Michael Cormican ◽  
Amy Banes‐Berceli ◽  
Marlina Manhiani ◽  
Ashlyn J Allen ◽  
...  

2000 ◽  
Vol 279 (4) ◽  
pp. R1268-R1276 ◽  
Author(s):  
Paul P. Leyssac ◽  
Niels-Henrik Holstein-Rathlou ◽  
Ole Skøtt

Inconsistencies in previous reports regarding changes in early distal NaCl concentration (EDNaCl) and renin secretion during osmotic diuresis motivated our reinvestigation. After intravenous infusion of 10% mannitol, EDNaCl fell from 42.6 to 34.2 mM. Proximal tubular pressure increased by 12.6 mmHg. Urine flow increased 10-fold, and sodium excretion increased by 177%. Plasma renin concentration (PRC) increased by 58%. Renal blood flow and glomerular filtration rate decreased, however end-proximal flow remained unchanged. After a similar volume of hypotonic glucose (152 mM), EDNaClincreased by 3.6 mM, ( P < 0.01) without changes in renal hemodynamics, urine flow, sodium excretion rate, or PRC. Infusion of 300 μmol NaCl in a smaller volume caused EDNaCl to increase by 6.4 mM without significant changes in PRC. Urine flow and sodium excretion increased significantly. There was a significant inverse relationship between superficial nephron EDNaCl and PRC. We conclude that EDNa decreases during osmotic diuresis, suggesting that the increase in PRC was mediated by the macula densa. The results suggest that the natriuresis during osmotic diuresis is a result of impaired sodium reabsorption in distal tubules and collecting ducts.


1988 ◽  
Vol 75 (2) ◽  
pp. 167-170 ◽  
Author(s):  
Antonio P. Quintanilla ◽  
Maria I. Weffer ◽  
Haengil Koh ◽  
Mohammed Rahman ◽  
Agostino Molteni ◽  
...  

1. We measured ouabain-insensitive adenosine triphosphatase (ATPase), sodium, potassium-dependent adenosine triphosphatase (Na+,K+-ATPase) and intracellular Na+ and K+ in the erythrocytes of 19 healthy volunteers, before and after supplementation of their normal diet with 6.0–8.9 g of salt (102–137 mmol of NaCl) per day, for 5 days. 2. The subjects had a small but significant gain in weight. Mean plasma renin activity decreased from 1.57 to 0.73 pmol of angiotensin I h−1 ml−1 and plasma aldosterone from 0.46 to 0.24 nmol/l. 3. Total ATPase activity fell from 197.9 nmol of inorganic phosphate h−1 mg−1 during the control period to 173.5 during the high-salt period (P < 0.0125). Na+,K+-ATPase activity fell from 162.2 to 141.4 nmol of inorganic phosphate h−1 mg−1 (P < 0.05). Intracellular Na + and intracellular K+ did not change. 4. These results are consistent with the hypothesis that salt-induced volume expansion causes the release of a factor inhibitory to the Na+ pump.


2015 ◽  
Vol 26 (12) ◽  
pp. 2953-2962 ◽  
Author(s):  
Matthew A. Sparks ◽  
Johannes Stegbauer ◽  
Daian Chen ◽  
Jose A. Gomez ◽  
Robert C. Griffiths ◽  
...  

1988 ◽  
Vol 74 (1) ◽  
pp. 63-69 ◽  
Author(s):  
S. B. Harrap ◽  
A. E. Doyle

1. To determine the relevance of renal circulatory abnormalities found in the immature spontaneously hypertensive rat (SHR) to the genetic hypertensive process, glomerular filtration rate and renal blood flow were measured in conscious F2 rats, derived from crossbreeding SHR and normotensive Wistar–Kyoto rats (WKY), at 4, 11 and 16 weeks of age by determining the renal clearances of 51Cr-ethylenediaminetetra-acetate and 125I-hippuran respectively. Plasma renin activity was measured at 11 and 16 weeks of age. 2. Mean arterial pressure, glomerular filtration rate and renal blood flow increased between 4 and 11 weeks of age. Between 11 and 16 weeks the mean glomerular filtration rate and renal blood flow did not alter, although the mean arterial pressure rose significantly. At 11 weeks of age, during the developmental phase of hypertension, a significant negative correlation between mean arterial pressure and both glomerular filtration rate and renal blood flow was noted. However, by 16 weeks when the manifestations of genetic hypertension were more fully expressed, no correlation between mean arterial pressure and renal blood flow or glomerular filtration rate was observed. Plasma renin activity was negatively correlated with both glomerular filtration rate and renal blood flow, but the relationship was stronger at 11 than at 16 weeks of age. 3. These results suggest that the reduction in renal blood flow and glomerular filtration rate, found in immature SHR, is genetically linked to the hypertension and may be of primary pathogenetic importance. It is proposed that the increased renal vascular resistance in these young animals stimulates the rise of systemic arterial pressure which returns renal blood flow and glomerular filtration rate to normal.


1982 ◽  
Vol 5 (2) ◽  
pp. 57-67
Author(s):  
H.-H. Neumayer ◽  
K. Wagner ◽  
G. Schuhze ◽  
P. Laubner ◽  
M.K. Maiga ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2747
Author(s):  
Amjad H. Jarrar ◽  
Lily Stojanovska ◽  
Vasso Apostolopoulos ◽  
Leila Cheikh Ismail ◽  
Jack Feehan ◽  
...  

Non-communicable diseases (NCDs) such as cardiovascular disease, cancer and diabetes, are increasing worldwide and cause 65% to 78% of deaths in the Gulf Cooperation Council (GCC). A random sample of 477 healthy adults were recruited in the United Arab Emirates (UAE) in the period March–June 2015. Demographic, lifestyle, medical, anthropometric and sodium excretion data were collected. A questionnaire was used to measure knowledge, attitude and practice regarding salt. Mean sodium and potassium excretion were 2713.4 ± 713 mg/day and 1803 ± 618 mg/day, respectively, significantly higher than the World Health Organization (WHO) recommendations for sodium (2300 mg/day) and lower for potassium (3150 mg/day). Two-thirds (67.4%) exceeded sodium guidelines, with males 2.6 times more likely to consume excessively. The majority of the participants add salt during cooking (82.5%) and whilst eating (66%), and 75% identified processed food as high source of salt. Most (69.1%) were aware that excessive salt could cause disease. Most of the UAE population consumes excess sodium and insufficient potassium, likely increasing the risk of NCDs. Despite most participants being aware that high salt intake is associated with adverse health outcomes, this did not translate into salt reduction action. Low-sodium, high-potassium dietary interventions such as the Mediterranean diet are vital in reducing the impact of NCDs in the UAE.


2020 ◽  
Vol 33 (4) ◽  
pp. 371-371
Author(s):  
Hong-yi Wang ◽  
Yong-jie He ◽  
Wei Li ◽  
Fan Yang ◽  
Ning-ling Sun

Abstract Background To survey the relationship between salt intake and blood pressure in hypertensive patients in Beijing. Methods A cross-sectional survey was used. Essential hypertensive patients were enrolled and divided into three groups (low, medium, and high salt intake) according to their 24 h urinary sodium excretion, which was used to access the salt intake. Blood pressure was measured through office measurement and ambulatory blood pressure monitoring. Results A total of 2,241 patients were enrolled with a mean age of 59.5 ± 13.8 years, mean blood pressure of 141.1 ± 18.5/84.6 ± 12.7 mm Hg, and urinary sodium excretion of 163.9 (95% CI 160.3–167.4) mmol [equal to salt intake 9.59 (9.38–9.79) g/d]. There were 1,544 cases from tertiary hospitals and the other 697 cases from community hospitals. Patients from community hospitals took more salt than patients from tertiary hospitals. Patients with high salt intake were younger than patients with low and medium salt intake. There were more males in high salt intake group than in the other two groups. Ambulatory blood pressure monitoring showed that patients with high salt intake had higher mean blood pressure not only in daytime, but also at night. The diastolic blood pressure in patients with medium salt intake was higher than that in patients with low salt intake. Conclusions Higher salt intake was associated with higher ambulatory blood pressure in hypertensive patients. More effort should be made to lower salt intake to improve blood pressure control rate.


Sign in / Sign up

Export Citation Format

Share Document