scholarly journals Architecture of the human renal inner medulla and functional implications

2015 ◽  
Vol 309 (7) ◽  
pp. F627-F637 ◽  
Author(s):  
Guojun Wei ◽  
Seymour Rosen ◽  
William H. Dantzler ◽  
Thomas L. Pannabecker

The architecture of the inner stripe of the outer medulla of the human kidney has long been known to exhibit distinctive configurations; however, inner medullary architecture remains poorly defined. Using immunohistochemistry with segment-specific antibodies for membrane fluid and solute transporters and other proteins, we identified a number of distinctive functional features of human inner medulla. In the outer inner medulla, aquaporin-1 (AQP1)-positive long-loop descending thin limbs (DTLs) lie alongside descending and ascending vasa recta (DVR, AVR) within vascular bundles. These vascular bundles are continuations of outer medullary vascular bundles. Bundles containing DTLs and vasa recta lie at the margins of coalescing collecting duct (CD) clusters, thereby forming two regions, the vascular bundle region and the CD cluster region. Although AQP1 and urea transporter UT-B are abundantly expressed in long-loop DTLs and DVR, respectively, their expression declines with depth below the outer medulla. Transcellular water and urea fluxes likely decline in these segments at progressively deeper levels. Smooth muscle myosin heavy chain protein is also expressed in DVR of the inner stripe and the upper inner medulla, but is sparsely expressed at deeper inner medullary levels. In rodent inner medulla, fenestrated capillaries abut CDs along their entire length, paralleling ascending thin limbs (ATLs), forming distinct compartments (interstitial nodal spaces; INSs); however, in humans this architecture rarely occurs. Thus INSs are relatively infrequent in the human inner medulla, unlike in the rodent where they are abundant. UT-B is expressed within the papillary epithelium of the lower inner medulla, indicating a transcellular pathway for urea across this epithelium.

2000 ◽  
Vol 278 (4) ◽  
pp. H1248-H1255 ◽  
Author(s):  
Thomas L. Pallone ◽  
Erik P. Silldorff ◽  
Zhong Zhang

The intracellular calcium ([Ca2+]i) response of outer medullary descending vasa recta (OMDVR) endothelia to ANG II was examined in fura 2-loaded vessels. Abluminal ANG II (10− 8 M) caused [Ca2+]i to fall in proportion to the resting [Ca2+]i ( r =0.82) of the endothelium. ANG II (10− 8 M) also inhibited both phases of the [Ca2+]i response generated by bradykinin (BK, 10− 7 M), 835 ± 201 versus 159 ± 30 nM (peak phase) and 169 ± 26 versus 103 ± 14 nM (plateau phase) (means ± SE). Luminal ANG II reduced BK (10− 7 M)-stimulated plateau [Ca2+]i from 180 ± 40 to 134 ± 22 nM without causing vasoconstriction. Abluminal ANG II added to the bath after luminal application further reduced [Ca2+]i to 113 ± 9 nM and constricted the vessels. After thapsigargin (TG) pretreatment, ANG II (10− 8 M) caused [Ca2+]i to fall from 352 ± 149 to 105 ± 37 nM. This effect occurred at a threshold ANG II concentration of 10− 10 M and was maximal at 10− 8 M. ANG II inhibited both the rate of Ca2+ entry into [Ca2+]i-depleted endothelia and the rate of Mn2+ entry into [Ca2+]i-replete endothelia. In contrast, ANG II raised [Ca2+]i in the medullary thick ascending limb and outer medullary collecting duct, increasing [Ca2+]i from baselines of 99 ± 33 and 53 ± 11 to peaks of 200 ± 47 and 65 ± 11 nM, respectively. We conclude that OMDVR endothelia are unlikely to be the source of ANG II-stimulated NO production in the medulla but that interbundle nephrons might release Ca2+-dependent vasodilators to modulate vasomotor tone in vascular bundles.


2003 ◽  
Vol 284 (1) ◽  
pp. F65-F81 ◽  
Author(s):  
Stéphane Hervy ◽  
S. Randall Thomas

We used a mathematical model to explore the possibility that metabolic production of net osmoles in the renal inner medulla (IM) may participate in the urine-concentrating mechanism. Anaerobic glycolysis (AG) is an important source of energy for cells of the IM, because this region of the kidney is hypoxic. AG is also a source of net osmoles, because it splits each glucose into two lactate molecules, which are not metabolized within the IM. Furthermore, these sugars exert their full osmotic effect across the epithelia of the thin descending limb of Henle's loop and the collecting duct, so they are apt to fulfill the external osmole role previously attributed to interstitial urea (whose role is compromised by the high urea permeability of long descending limbs). The present simulations show that physiological levels of IM glycolytic lactate production could suffice to significantly amplify the IM accumulation of NaCl. The model predicts that for this to be effective, IM lactate recycling must be efficient, which requires high lactate permeability of descending vasa recta and reduced IM blood flow during antidiuresis, two conditions that are probably fulfilled under normal circumstances. The simulations also suggest that the resulting IM osmotic gradient is virtually insensitive to the urea permeability of long descending limbs, thus lifting a longstanding paradox, and that this high urea permeability may serve for independent regulation of urea balance.


2002 ◽  
Vol 282 (3) ◽  
pp. F530-F540 ◽  
Author(s):  
Young-Hee Kim ◽  
Dong-Un Kim ◽  
Ki-Hwan Han ◽  
Ju-Young Jung ◽  
Jeff M. Sands ◽  
...  

Urea transport in the kidney is mediated by a family of transporter proteins that includes renal urea transporters (UT-A) and erythrocyte urea transporters (UT-B). Because newborn rats are not capable of producing concentrated urine, we examined the time of expression and the distribution of UT-A and UT-B in the developing rat kidney by light and electron microscopic immunocytochemistry. Kidneys from 16-, 18-, and 20-day-old fetuses, 1-, 4-, 7-, 14-, and 21-day-old pups, and adult animals were studied. In the adult kidney, UT-A was expressed intensely in the inner medullary collecting duct (IMCD) and terminal portion of the short-loop descending thin limb (DTL) and weakly in long-loop DTL in the outer part of the inner medulla. UT-A immunoreactivity was not present in the fetal kidney but was observed in the IMCD and DTL in 1-day-old pups. The intensity of UT-A immunostaining in the IMCD gradually increased during postnatal development. In 4- and 7-day-old pups, UT-A immunoreactivity was present in the DTL at the border between the outer and inner medulla. In 14- and 21-day-old pups, strong UT-A immunostaining was observed in the terminal part of short-loop DTL in the outer medulla, and weak labeling remained in long-loop DTL descending into the outer part of the inner medulla. In the adult kidney, there was intense staining for UT-B in descending vasa recta (DVR) and weak labeling of glomeruli. In the developing kidney, UT-B was first observed in the DVR of a 20-day-old fetus. After birth there was a striking increase in the number of UT-B-positive DVR, in association with the formation of vascular bundles. The intensity of immunostaining remained strong in the outer medulla but gradually decreased in the inner medulla. We conclude that the expression of urea transporters in short-loop DTL and DVR coincides with the development of the ability to produce a concentrated urine.


2012 ◽  
Vol 303 (7) ◽  
pp. F907-F917 ◽  
Author(s):  
Aurélie Edwards ◽  
Anita T. Layton

The present study aimed to elucidate the reciprocal interactions between oxygen (O2), nitric oxide (NO), and superoxide (O2−) and their effects on vascular and tubular function in the outer medulla. We expanded our region-based model of transport in the rat outer medulla (Edwards A, Layton AT. Am J Physiol Renal Physiol 301: F979–F996, 2011) to incorporate the effects of NO on descending vasa recta (DVR) diameter and blood flow. Our model predicts that the segregation of long DVR in the center of vascular bundles, away from tubular segments, gives rise to large radial NO concentration gradients that in turn result in differential regulation of vasoactivity in short and long DVR. The relative isolation of long DVR shields them from changes in the rate of NaCl reabsorption, and hence from changes in O2 requirements, by medullary thick ascending limbs (mTALs), thereby preserving O2 delivery to the inner medulla. The model also predicts that O2− can sufficiently decrease the bioavailability of NO in the interbundle region to affect the diameter of short DVR, suggesting that the experimentally observed effects of O2− on medullary blood flow may be at least partly mediated by NO. In addition, our results indicate that the tubulovascular cross talk of NO, that is, the diffusion of NO produced by mTAL epithelia toward adjacent DVR, helps to maintain blood flow and O2 supply to the interbundle region even under basal conditions. NO also acts to preserve local O2 availability by inhibiting the rate of active Na+ transport, thereby reducing the O2 requirements of mTALs. The dual regulation by NO of oxygen supply and demand is predicted to significantly attenuate the hypoxic effects of angiotensin II.


2014 ◽  
Vol 307 (3) ◽  
pp. F263-F272 ◽  
Author(s):  
Brendan C. Fry ◽  
Aurélie Edwards ◽  
Ioannis Sgouralis ◽  
Anita T. Layton

We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies. The model represents the arrangement of tubules around a vascular bundle in the outer medulla and around a collecting duct cluster in the upper inner medulla. Model simulations yield marked gradients in intrabundle and interbundle interstitial fluid oxygen tension (Po2), NaCl concentration, and osmolality in the outer medulla, owing to the vigorous active reabsorption of NaCl by the thick ascending limbs. In the inner medulla, where the thin ascending limbs do not mediate significant active NaCl transport, interstitial fluid composition becomes much more homogeneous with respect to NaCl, urea, and osmolality. Nonetheless, a substantial Po2 gradient remains, owing to the relatively high oxygen demand of the inner medullary collecting ducts. Perhaps more importantly, the model predicts that in the absence of the three-dimensional medullary architecture, oxygen delivery to the inner medulla would drastically decrease, with the terminal inner medulla nearly completely deprived of oxygen. Thus model results suggest that the functional role of the three-dimensional medullary architecture may be to preserve oxygen delivery to the papilla. Additionally, a simulation that represents low medullary blood flow suggests that the separation of thick limbs from the vascular bundles substantially increases the risk of the segments to hypoxic injury. When nephrons and vessels are more homogeneously distributed, luminal Po2 in the thick ascending limb of superficial nephrons increases by 66% in the inner stripe. Furthermore, simulations predict that owing to the Bohr effect, the presumed greater acidity of blood in the interbundle regions, where thick ascending limbs are located, relative to that in the vascular bundles, facilitates the delivery of O2 to support the high metabolic requirements of the thick limbs and raises NaCl reabsorption.


2016 ◽  
Vol 311 (3) ◽  
pp. F586-F599 ◽  
Author(s):  
Anne R. Tinning ◽  
Boye L. Jensen ◽  
Iben Johnsen ◽  
Daian Chen ◽  
Thomas M. Coffman ◽  
...  

Postnatal inhibition or deletion of angiotensin II (ANG II) AT1 receptors impairs renal medullary mircrovascular development through a mechanism that may include vascular endothelial growth factor (VEGF). The present study was designed to test if VEGF/VEGF receptor signaling is necessary for the development of the renal medullary microcirculation. Endothelial cell-specific immunolabeling of kidney sections from rats showed immature vascular bundles at postnatal day (P) 10 with subsequent expansion of bundles until P21. Medullary VEGF protein abundance coincided with vasa recta bundle formation. In human fetal kidney tissue, immature vascular bundles appeared early in the third trimester (GA27-28) and expanded in size until term. Rat pups treated with the VEGF receptor-2 (VEGFR2) inhibitor vandetanib (100 mg·kg−1·day−1) from P7 to P12 or P10 to P16 displayed growth retardation and proteinuria. Stereological quantification showed a significant reduction in total length (386 ± 13 vs. 219 ± 16 m), surface area, and volume of medullary microvessels. Vascular bundle architecture was unaffected. ANG II-AT1A/1B−/− mice kidneys displayed poorly defined vasa recta bundles whereas mice with collecting duct principal cell-specific AT1A deletion displayed no medullary microvascular phenotype. In conclusion, VEGFR2 signaling during postnatal development is necessary for expansion of the renal medullary microcirculation but not structural patterning of the vasa recta bundles, which occurs through an AT1-mediated mechanism.


2010 ◽  
Vol 299 (3) ◽  
pp. F616-F633 ◽  
Author(s):  
Aurélie Edwards ◽  
Anita T. Layton

To examine the impact of the complex radial organization of the rat outer medulla (OM) on the distribution of nitric oxide (NO), superoxide (O2−) and total peroxynitrite (ONOO), we developed a mathematical model that simulates the transport of those species in a cross section of the rat OM. To simulate the preferential interactions among tubules and vessels that arise from their relative radial positions in the OM, we adopted the region-based approach developed by Layton and Layton ( Am J Physiol Renal Physiol 289: F1346–F1366, 2005). In that approach, the structural organization of the OM is represented by means of four concentric regions centered on a vascular bundle. The model predicts the concentrations of NO, O2−, and ONOO in the tubular and vascular lumen, epithelial and endothelial cells, red blood cells (RBCs), and interstitial fluid. Model results suggest that the large gradients in Po2 from the core of the vascular bundle toward its periphery, which stem from the segregation of O2-supplying descending vasa recta (DVR) within the vascular bundles, in turn generate steep radial NO and O2− concentration gradients, since the synthesis of both solutes is O2 dependent. Without the rate-limiting effects of O2, NO concentration would be lowest in the vascular bundle core, that is, the region with the highest density of RBCs, which act as a sink for NO. Our results also suggest that, under basal conditions, the difference in NO concentrations between DVR that reach into the inner medulla and those that turn within the OM should lead to differences in vasodilation and preferentially increase blood flow to the inner medulla.


2013 ◽  
Vol 305 (5) ◽  
pp. F745-F752 ◽  
Author(s):  
Rebecca L. Gilbert ◽  
Thomas L. Pannabecker

Every collecting duct (CD) of the rat inner medulla is uniformly surrounded by about four abutting ascending vasa recta (AVR) running parallel to it. One or two ascending thin limbs (ATLs) lie between and parallel to each abutting AVR pair, opposite the CD. These structures form boundaries of axially running interstitial compartments. Viewed in transverse sections, these compartments appear as four interstitial nodal spaces (INSs) positioned symmetrically around each CD. The axially running compartments are segmented by interstitial cells spaced at regular intervals. The pairing of ATLs and CDs bounded by an abundant supply of AVR carrying reabsorbed water, NaCl, and urea make a strong argument that the mixing of NaCl and urea within the INSs and countercurrent flows play a critical role in generating the inner medullary osmotic gradient. The results of this study fully support that hypothesis. We quantified interactions of all structures comprising INSs along the corticopapillary axis for two rodent species, the Munich-Wistar rat and the kangaroo rat. The results showed remarkable similarities in the configurations of INSs, suggesting that the structural arrangement of INSs is a highly conserved architecture that plays a fundamental role in renal function. The number density of INSs along the corticopapillary axis directly correlated with a loop population that declines exponentially with distance below the outer medullary-inner medullary boundary. The axial configurations were consistent with discrete association between near-bend loop segments and INSs and with upper loop segments lying distant from INSs.


2010 ◽  
Vol 298 (4) ◽  
pp. F973-F987 ◽  
Author(s):  
Anita T. Layton ◽  
Thomas L. Pannabecker ◽  
William H. Dantzler ◽  
Harold E. Layton

A new, region-based mathematical model of the urine concentrating mechanism of the rat renal inner medulla (IM) was used to investigate the significance of transport and structural properties revealed in recent studies that employed immunohistochemical methods combined with three-dimensional computerized reconstruction. The model simulates preferential interactions among tubules and vessels by representing two concentric regions. The inner region, which represents a collecting duct (CD) cluster, contains CDs, some ascending thin limbs (ATLs), and some ascending vasa recta; the outer region, which represents the intercluster region, contains descending thin limbs, descending vasa recta, remaining ATLs, and additional ascending vasa recta. In the upper portion of the IM, the model predicts that interstitial Na+ and urea concentrations (and osmolality) in the CD clusters differ significantly from those in the intercluster regions: model calculations predict that those CD clusters have higher urea concentrations than the intercluster regions, a finding that is consistent with a concentrating mechanism that depends principally on the mixing of NaCl from ATLs and urea from CDs. In the lower IM, the model predicts that limited or nearly zero water permeability in descending thin limb segments will increase concentrating effectiveness by increasing the rate of solute-free water absorption. The model predicts that high urea permeabilities in the upper portions of ATLs and increased contact areas of longest loop bends with CDs both modestly increase concentrating capability. A surprising finding is that the concentrating capability of this region-based model falls short of the capability of a model IM that has radially homogeneous interstitial fluid at each level but is otherwise analogous to the region-based model.


2005 ◽  
Vol 289 (6) ◽  
pp. F1367-F1381 ◽  
Author(s):  
Anita T. Layton ◽  
Harold E. Layton

In a companion study (Layton AT and Layton HE. Am J Physiol Renal Physiol 289: F1346–F1366, 2005), a region-based mathematical model was formulated for the urine concentrating mechanism (UCM) in the outer medulla (OM) of the rat kidney. In the present study, we quantified the sensitivity of that model to several structural assumptions, including the degree of regionalization and the degree of inclusion of short descending limbs (SDLs) in the vascular bundles of the inner stripe (IS). Also, we quantified model sensitivity to several parameters that have not been well characterized in the experimental literature, including boundary conditions, short vasa recta distribution, and ascending vasa recta (AVR) solute permeabilities. These studies indicate that regionalization elevates the osmolality of the fluid delivered into the inner medulla via the collecting ducts; that model predictions are not significantly sensitive to boundary conditions; and that short vasa recta distribution and AVR permeabilities significantly impact concentrating capability. Moreover, we investigated, in the context of the UCM, the functional significance of several aspects of tubular segmentation and heterogeneity: SDL segments in the IS that are likely to be impermeable to water but highly permeable to urea; a prebend segment of SDLs that may be functionally like thick ascending limb (TAL); differing IS and outer stripe Na+ active transport rates in TAL; and potential active urea secretion into the proximal straight tubules. Model calculations predict that these aspects of tubular of segmentation and heterogeneity generally enhance solute cycling or promote effective UCM function.


Sign in / Sign up

Export Citation Format

Share Document