scholarly journals Dysregulated human renin expression in transgenic mice carrying truncated genomic constructs: evidence supporting the presence of insulators at the renin locus

2008 ◽  
Vol 295 (3) ◽  
pp. F642-F653 ◽  
Author(s):  
Xiyou Zhou ◽  
Eric T. Weatherford ◽  
Xuebo Liu ◽  
Ella Born ◽  
Henry L. Keen ◽  
...  

We previously generated transgenic mice carrying a large P1 artificial chromosome (PAC160) encompassing a 160-kb segment containing the human renin gene, two upstream genes, and one downstream gene. We also previously generated mutant PAC160 constructs lacking the distal enhancer and concluded it is required to maintain baseline expression of human renin, but is not required for tissue-specific, cell-specific, and regulated expression of renin in vivo. We now report two additional transgenic lines carrying random truncations of PAC160 upstream of the renin gene. Southern and PCR mapping studies indicate that the truncation break points in the two lines are located ∼10.4 and 2.5 kb upstream of the renin gene causing a deletion of all DNA upstream of the break. We tested the hypothesis that large-scale deletion of DNA upstream of the human renin gene including the enhancer would cause dysregulation of human renin expression. Phenotypically, these truncations cause a severe dysregulation of human renin expression, but remarkably, a preservation of the normal tissue-specific expression of the human ethanolamine kinase 2 (ETNK2) gene which lies immediately downstream of renin. Several functional binding sites for CTCF, a mammalian insulator protein, were identified in and around the renin and ETNK2 loci by gel shift and chromatin immunoprecipitation. We conclude that there are sequences in and around the renin and ETNK2 loci which act as boundaries between neighboring genes which insulate them from each other. The study illustrates the value of taking a much wider genomic perspective when studying mechanisms regulating gene expression.

2008 ◽  
Vol 294 (2) ◽  
pp. R279-R287 ◽  
Author(s):  
Xiyou Zhou ◽  
Curt D. Sigmund

We tested the hypothesis that a transcriptional chorionic enhancer (CE), previously identified to increase human renin expression in choriodecidual cells is required to mediate tissue-specific, cell-specific, and regulated expression of human renin in transgenic mice. Recombineering was used to delete the CE upstream of the renin gene alone or in combination with the kidney enhancer (KE) in a large artificial chromosome construct containing the entire human renin gene and extensive flanking sequences. Deletion of the CE had no qualitative or quantitative effect on the tissue-specific expression of human renin, nor on the cellular localization of human renin in the kidney or placenta. Combined deletion of both the CE and KE caused a decrease in the level of renal renin expression consistent with the established role of the KE. We also considered the possibility that the CE is a downstream enhancer of the KiSS1 gene, which lies directly upstream of renin and is also expressed in the placenta. Deletion of the CE alone, or the CE and KE together, had no effect on the level of KiSS1 expression in the placenta. These data provide convincing evidence that the CE is silent in vivo, at least in the mouse. The absence of a phenotype caused by deletion of the CE is consistent with the observation that the sequence is not evolutionarily conserved.


1989 ◽  
Vol 165 (2) ◽  
pp. 826-832 ◽  
Author(s):  
Akiyoshi Fukamizu ◽  
Min Seok Seo ◽  
Toshihisa Hatae ◽  
Minesuke Yokoyama ◽  
Tatsuji Nomura ◽  
...  

1994 ◽  
Vol 14 (11) ◽  
pp. 7276-7284
Author(s):  
W Zhong ◽  
J Mirkovitch ◽  
J E Darnell

Hepatocyte nuclear factor 4 (HNF-4) is a liver-enriched transcription factor and a member of the steroid hormone receptor superfamily. HNF-4 is required for the hepatoma-specific expression of HNF-1 alpha, another liver-enriched transcription factor, suggesting the early participation of HNF-4 in development. To prepare for further study of HNF-4 in development, the tissue-specific expression of the mouse HNF-4 gene was studied by analyzing the promoter region for required DNA elements. DNase-hypersensitive sites in the gene in liver and kidney tissues were found in regions both distal and proximal to the RNA start that were absent in tissues in which HNF-4 expression did not occur. By use of reporter constructs in transient-transfection assays and with transgenic mice, a region sufficient to drive liver-specific expression of HNF-4 was identified. While an HNF-1 binding site between bp -98 and -68 played an important role in the hepatoma-specific promoter activity of HNF-4 in transient-transfection assays, it was not sufficient for the liver-specific expression of a reporter gene in transgenic mice. Distal enhancer elements indicated by the presence of DNase I-hypersensitive sites at kb -5.5 and -6.5, while not functional in transient-transfection assays, were required for the correct expression of the mouse HNF-4 gene in animals.


1995 ◽  
Vol 268 (2) ◽  
pp. E213-E218 ◽  
Author(s):  
J. M. Gimble ◽  
X. Hua ◽  
F. Wanker ◽  
C. Morgan ◽  
C. Robinson ◽  
...  

Lipoprotein lipase, an enzyme of central importance to lipid metabolism, is most abundant in adipose tissues, cardiac and skeletal muscle, and portions of the brain. The current work examined the murine lipoprotein lipase promoter using transient transfection, gel-retention analyses, and transgenic mice. Maximum expression of the luciferase reporter gene in transfected cells was observed with -101 bp of the promoter. Nuclear extracts from tissues expressing lipoprotein lipase contained DNA binding proteins that recognize the CCAAT box (-64 bp) and an octamer motif (-46 bp); this combination of factors was absent in nonexpressing tissues. Transgenic mice from three of five founders prepared with -1,824-bp promoter constructs expressed the luciferase reporter gene at highest levels in brown adipose tissue and brain. These findings suggest that the -1,824-bp promoter region contains sequence elements responsible for the tissue-specific transcription of lipoprotein lipase in vivo.


1992 ◽  
Vol 70 (5) ◽  
pp. 1070-1079 ◽  
Author(s):  
C D Sigmund ◽  
C A Jones ◽  
C M Kane ◽  
C Wu ◽  
J A Lang ◽  
...  

2004 ◽  
Vol 17 (1) ◽  
pp. 4-10 ◽  
Author(s):  
Ravi Nistala ◽  
Xiaoji Zhang ◽  
Curt D. Sigmund

We previously reported the development and characterization of transgenic mice containing a large 160-kb P1 artificial chromosome (PAC) encompassing the renin (REN) locus from human chromosome 1. Here we demonstrate that PAC160 not only encodes REN, but also complete copies of the next upstream (KISS1) and downstream ( FLJ10761 ) gene along human chromosome 1. Incomplete copies of the second upstream (PEPP3) and downstream (SOX13) genes are also present. The gene order PEPP3-KISS1-REN-FLJ10761-SOX13 is conserved in mice containing either one or two copies of the REN locus. Despite the close localization of KISS1, REN, and FLJ10761 , they each exhibit distinct, yet overlapping tissue-specific expression profiles in humans. The tissue-specific expression patterns of REN and FLJ10761 were retained in transgenic mice containing PAC160. Expression of REN and FLJ10761 were also proportional to copy number. Expression of KISS1 in PAC160 mice showed both similarities and differences to humans. These data suggest that expression of gene blocks encoded on large genomic clones are retained when the clones are used to generate transgenic mice. Genomic elements which act to insulate genes from their neighbors are also apparently retained.


1999 ◽  
Vol 277 (4) ◽  
pp. F599-F610 ◽  
Author(s):  
Peter Igarashi ◽  
Cooduvalli S. Shashikant ◽  
R. Brent Thomson ◽  
Dilys A. Whyte ◽  
Shuxian Liu-Chen ◽  
...  

Kidney-specific cadherin (Ksp-cadherin, cadherin 16) is a tissue-specific member of the cadherin superfamily that is expressed exclusively in the basolateral membrane of tubular epithelial cells in the kidney. To determine the basis for tissue-specific expression of Ksp-cadherin in vivo, we evaluated the activity of the promoter in transgenic mice. Transgenic mice containing 3.3 kb of the mouse Ksp-cadherin promoter and an Escherichia coli lacZ reporter gene were generated by pronuclear microinjection. Assays of β-galactosidase enzyme activity showed that the transgene was expressed exclusively in the kidney in both adult and developing mice. Within the kidney, the transgene was expressed in a subset of renal tubular epithelial cells that endogenously expressed Ksp-cadherin and that were identified as collecting ducts by colabeling with Dolichos biflorus agglutinin. In the developing metanephros, expression of the transgene in the branching ureteric bud correlated with the developmental expression of Ksp-cadherin. Identical patterns of expression were observed in multiple founder mice, indicating that kidney specificity was independent of transgene integration site. However, heterocellular expression was observed consistent with repeat-induced gene silencing. We conclude that the Ksp-cadherin gene promoter directs kidney-specific expression in vivo. Regulatory elements that are sufficient to recapitulate the tissue- and differentiation-specific expression of Ksp-cadherin in the renal collecting duct are located within 3.3 kb upstream to the transcriptional start site.


2008 ◽  
Vol 295 (6) ◽  
pp. R1849-R1857 ◽  
Author(s):  
Sudhir Jain ◽  
Govindaiah Vinukonda ◽  
Steven N. Fiering ◽  
Ashok Kumar

The human angiotensinogen (hAGT) gene contains an A/G polymorphism at −217, and frequency of −217A allele is increased in African-American hypertensive patients. The hAGT gene has seven polymorphic sites in the 1.2-kb region of its promoter, and variant −217A almost always occurs with −532T, −793A, and −1074T, whereas variant −217G almost always occurs with −532C, −793G, and −1074G. Since allele −6A is the predominant allele in African-Americans, the AGT gene can be subdivided into two main haplotypes, −6A:−217A (AA) and −6A:−217G (AG). To understand the role of these haplotypes on hAGT gene expression and on blood pressure regulation in an in vivo situation, we have generated double transgenic mice containing human renin gene and either AA or AG haplotype of the hAGT gene using knock-in strategy at the hypoxanthine phosphoribosyltransferase locus. We show here that 1) hAGT mRNA level is increased in the liver by 60% and in the kidney by 40%; and 2) plasma AGT level is increased by ∼40%, and plasma angiotensin II level is increased by ∼50% in male double transgenic mice containing AA haplotype of the hAGT gene compared with the AG haplotype. In addition, systolic blood pressure is increased by 8 mmHg in transgenic mice containing the AA haplotype compared with the AG haplotype. This is the first report to show the effect of polymorphisms in the promoter of a human gene on its transcription in an in vivo situation that ultimately leads to an increase in blood pressure.


1994 ◽  
Vol 14 (11) ◽  
pp. 7276-7284 ◽  
Author(s):  
W Zhong ◽  
J Mirkovitch ◽  
J E Darnell

Hepatocyte nuclear factor 4 (HNF-4) is a liver-enriched transcription factor and a member of the steroid hormone receptor superfamily. HNF-4 is required for the hepatoma-specific expression of HNF-1 alpha, another liver-enriched transcription factor, suggesting the early participation of HNF-4 in development. To prepare for further study of HNF-4 in development, the tissue-specific expression of the mouse HNF-4 gene was studied by analyzing the promoter region for required DNA elements. DNase-hypersensitive sites in the gene in liver and kidney tissues were found in regions both distal and proximal to the RNA start that were absent in tissues in which HNF-4 expression did not occur. By use of reporter constructs in transient-transfection assays and with transgenic mice, a region sufficient to drive liver-specific expression of HNF-4 was identified. While an HNF-1 binding site between bp -98 and -68 played an important role in the hepatoma-specific promoter activity of HNF-4 in transient-transfection assays, it was not sufficient for the liver-specific expression of a reporter gene in transgenic mice. Distal enhancer elements indicated by the presence of DNase I-hypersensitive sites at kb -5.5 and -6.5, while not functional in transient-transfection assays, were required for the correct expression of the mouse HNF-4 gene in animals.


Sign in / Sign up

Export Citation Format

Share Document