scholarly journals Ksp-cadherin gene promoter. II. Kidney-specific activity in transgenic mice

1999 ◽  
Vol 277 (4) ◽  
pp. F599-F610 ◽  
Author(s):  
Peter Igarashi ◽  
Cooduvalli S. Shashikant ◽  
R. Brent Thomson ◽  
Dilys A. Whyte ◽  
Shuxian Liu-Chen ◽  
...  

Kidney-specific cadherin (Ksp-cadherin, cadherin 16) is a tissue-specific member of the cadherin superfamily that is expressed exclusively in the basolateral membrane of tubular epithelial cells in the kidney. To determine the basis for tissue-specific expression of Ksp-cadherin in vivo, we evaluated the activity of the promoter in transgenic mice. Transgenic mice containing 3.3 kb of the mouse Ksp-cadherin promoter and an Escherichia coli lacZ reporter gene were generated by pronuclear microinjection. Assays of β-galactosidase enzyme activity showed that the transgene was expressed exclusively in the kidney in both adult and developing mice. Within the kidney, the transgene was expressed in a subset of renal tubular epithelial cells that endogenously expressed Ksp-cadherin and that were identified as collecting ducts by colabeling with Dolichos biflorus agglutinin. In the developing metanephros, expression of the transgene in the branching ureteric bud correlated with the developmental expression of Ksp-cadherin. Identical patterns of expression were observed in multiple founder mice, indicating that kidney specificity was independent of transgene integration site. However, heterocellular expression was observed consistent with repeat-induced gene silencing. We conclude that the Ksp-cadherin gene promoter directs kidney-specific expression in vivo. Regulatory elements that are sufficient to recapitulate the tissue- and differentiation-specific expression of Ksp-cadherin in the renal collecting duct are located within 3.3 kb upstream to the transcriptional start site.

Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 319-329 ◽  
Author(s):  
S Dziennis ◽  
RA Van Etten ◽  
HL Pahl ◽  
DL Morris ◽  
TL Rothstein ◽  
...  

Abstract CD11b is the alpha chain of the Mac-1 integrin and is preferentially expressed in myeloid cells (neutrophils, monocytes, and macrophages). We have previously shown that the CD11b promoter directs cell-type- specific expression in myeloid lines using transient transfection assays. To confirm that these promoter sequences contain the proper regulatory elements for correct myeloid expression of CD11b in vivo, we have used the -1.7-kb human CD11b promoter to direct reporter gene expression in transgenic mice. Stable founder lines were generated with two different reporter genes, a Thy 1.1 surface marker and the Escherichia coli lacZ (beta-galactosidase) gene. Analysis of founders generated with each reporter demonstrated that the CD11b promoter was capable of driving high levels of transgene expression in murine macrophages for the lifetime of the animals. Similar to the endogenous gene, transgene expression was preferentially found in mature monocytes, macrophages, and neutrophils and not in myeloid precursors. These experiments indicate that the -1.7 CD11b promoter contains the regulatory elements sufficient for high-level macrophage expression. This promoter should be useful for targeting heterologous gene expression to mature myeloid cells.


1995 ◽  
Vol 268 (2) ◽  
pp. E213-E218 ◽  
Author(s):  
J. M. Gimble ◽  
X. Hua ◽  
F. Wanker ◽  
C. Morgan ◽  
C. Robinson ◽  
...  

Lipoprotein lipase, an enzyme of central importance to lipid metabolism, is most abundant in adipose tissues, cardiac and skeletal muscle, and portions of the brain. The current work examined the murine lipoprotein lipase promoter using transient transfection, gel-retention analyses, and transgenic mice. Maximum expression of the luciferase reporter gene in transfected cells was observed with -101 bp of the promoter. Nuclear extracts from tissues expressing lipoprotein lipase contained DNA binding proteins that recognize the CCAAT box (-64 bp) and an octamer motif (-46 bp); this combination of factors was absent in nonexpressing tissues. Transgenic mice from three of five founders prepared with -1,824-bp promoter constructs expressed the luciferase reporter gene at highest levels in brown adipose tissue and brain. These findings suggest that the -1,824-bp promoter region contains sequence elements responsible for the tissue-specific transcription of lipoprotein lipase in vivo.


2002 ◽  
Vol 282 (1) ◽  
pp. R173-R183 ◽  
Author(s):  
Min Nian ◽  
Jun Gu ◽  
David M. Irwin ◽  
Daniel J. Drucker

The glucagon-like peptides (GLPs) are synthesized and secreted in a nutrient-dependent manner in rodents; however, the factors regulating human GLP-1 and GLP-2 biosynthesis remain unclear. To understand how nutrients regulate human proglucagon gene expression, we studied the expression of a human proglucagon promoter-growth hormone (GH) transgene in 1.6 human glucagon-GH transgenic mice. Fasting-refeeding significantly decreased and increased the levels of circulating mouse insulin and transgene-derived hGH ( P < 0.05 fasting vs. refeeding) and decreased and upregulated, respectively, the levels of endogenous mouse proglucagon RNA in the ileum but not in the jejunum or colon. High-fiber feeding significantly increased the levels of glucose-stimulated circulating hGH and upregulated levels of mouse intestinal proglucagon gene expression in the jejunum, ileum, and colon ( P < 0.05, 0 vs. 30% fiber diet). In contrast, neither fasting-refeeding nor a high-fiber diet upregulated the expression of the human proglucagon promoter-hGH transgene. These findings demonstrate that human proglucagon gene regulatory sequences specifying tissue-specific expression in gut endocrine cells are not sufficient for recognition of energy-derived signals regulating murine glucagon gene expression in enteroendocrine cells in vivo.


1987 ◽  
Vol 7 (10) ◽  
pp. 3749-3758
Author(s):  
V da C Soares ◽  
R M Gubits ◽  
P Feigelson ◽  
F Costantini

To investigate the tissue-specific and hormonal regulation of the rat alpha 2u globulin gene family, we introduced one cloned member of the gene family into the mouse germ line and studied its expression in the resulting transgenic mice. Alpha 2u globulingene 207 was microinjected on a 7-kilobase DNA fragment, and four transgenic lines were analyzed. The transgene was expressed at very high levels, specifically in the liver and the preputial gland of adult male mice. The expression in male liver was first detected at puberty, and no expression was detected in female transgenic mice. This pattern of expression is similar to the expression of endogenous alpha 2u globulin genes in the rat but differs from the expression of the homologous mouse major urinary protein (MUP) gene family in that MUPs are synthesized in female liver and not in the male preputial gland. We conclude that these differences between rat alpha 2u globulin and mouse MUP gene expression are due to evolutionary differences in cis-acting regulatory elements. The expression of the alpha 2u globulin transgene in the liver was abolished by castration and fully restored after testosterone replacement. The expression could also be induced in the livers of female mice by treatment with either testosterone or dexamethasone, following ovariectomy and adrenalectomy. Therefore, the cis-acting elements responsible for regulation by these two hormones, as well as those responsible for tissue-specific expression, are closely linked to the alpha 2u globulin gene.


1994 ◽  
Vol 14 (2) ◽  
pp. 1220-1229
Author(s):  
K J Lee ◽  
R Hickey ◽  
H Zhu ◽  
K R Chien

The cardiac myosin light-chain 2v (MLC-2v) gene has served as a model system to identify the pathways which restrict the expression of cardiac muscle genes to particular chambers of the heart during cardiogenesis. To identify the critical cis regulatory elements which mediate ventricular chamber-specific expression of the MLC-2v gene in the in vivo context, a series of transgenic mice which harbor mutations in putative MLC-2 cis regulatory elements in a 250-bp MLC-2-luciferase fusion gene which is expressed in a ventricular chamber-specific fashion in transgenic mice were generated. These studies demonstrate that both components of HF-1 (HF-1a and HF-1b/MEF-2) are required to maintain ventricular chamber-specific expression and function as positive regulatory elements. Mutations in another conserved element (HF-2) are without statistically significant effect on ventricular chamber expression. Transgenics harboring mutations in the E-box site also displayed significant upregulation of reporter activity in the soleus, gastrocnemius, and uterus, with a borderline effect on expression in liver. Mutations in another conserved element (HF-3) result in a marked (> 75-fold) upregulation of the luciferase reporter activity in the soleus muscle of multiple independent or transgenic founders. Since the HF-3 mutations appeared to have only a marginal effect on luciferase reporter activity in liver tissue, HF-3 appears to function as a novel negative regulatory element to primarily suppress expression in muscle tissues. Thus, a combination of positive (HF-1a/HF-1b) and negative (E-box and HF-3) regulatory elements appear to be required to maintain ventricular chamber-specific expression in the in vivo context.


Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 419-430 ◽  
Author(s):  
Sarah Ogilvy ◽  
Andrew G. Elefanty ◽  
Jane Visvader ◽  
Mary L. Bath ◽  
Alan W. Harris ◽  
...  

Abstract The vav gene is expressed in all hematopoietic but few other cell types. To explore its unusual compartment-wide regulation, we cloned the murine gene, sequenced its promoter region, identified DNase I hypersensitive (HS) sites in the chromatin, and tested their promoter activity with a β-galactosidase (β-gal) reporter gene in cell lines and transgenic mice. Whereas fibroblasts had no HS sites, a myeloid and an erythroid cell line contained five, located 0.2 kb (HS1), 1.9 kb (HS2), and 3.6 kb (HS3) upstream from the transcription start and 0.6 kb (HS4) and 10 kb (HS5) downstream. A vav DNA fragment including HS1 promoted β-gal expression in a myeloid but not a fibroblast line. Expression in leukocytes of transgenic mice also required HS2 and HS5. Only hematopoietic organs contained β-gal, but virtually all β-gal+ cells were B or T lymphocytes. Expression was always variegated (mosaic), and the proportion of β-gal+ cells declined with lymphoid maturation and animal age. Thus, these vav regulatory elements promoted hematopoietic-specific expression in vivo, at least in lymphocytes, but the transgene was sporadically silenced. Maintaining pan-hematopoietic expression may require additional vavelements or an alternative reporter.


1987 ◽  
Vol 7 (10) ◽  
pp. 3749-3758 ◽  
Author(s):  
V da C Soares ◽  
R M Gubits ◽  
P Feigelson ◽  
F Costantini

To investigate the tissue-specific and hormonal regulation of the rat alpha 2u globulin gene family, we introduced one cloned member of the gene family into the mouse germ line and studied its expression in the resulting transgenic mice. Alpha 2u globulingene 207 was microinjected on a 7-kilobase DNA fragment, and four transgenic lines were analyzed. The transgene was expressed at very high levels, specifically in the liver and the preputial gland of adult male mice. The expression in male liver was first detected at puberty, and no expression was detected in female transgenic mice. This pattern of expression is similar to the expression of endogenous alpha 2u globulin genes in the rat but differs from the expression of the homologous mouse major urinary protein (MUP) gene family in that MUPs are synthesized in female liver and not in the male preputial gland. We conclude that these differences between rat alpha 2u globulin and mouse MUP gene expression are due to evolutionary differences in cis-acting regulatory elements. The expression of the alpha 2u globulin transgene in the liver was abolished by castration and fully restored after testosterone replacement. The expression could also be induced in the livers of female mice by treatment with either testosterone or dexamethasone, following ovariectomy and adrenalectomy. Therefore, the cis-acting elements responsible for regulation by these two hormones, as well as those responsible for tissue-specific expression, are closely linked to the alpha 2u globulin gene.


1990 ◽  
Vol 10 (11) ◽  
pp. 5646-5654 ◽  
Author(s):  
P A Garrity ◽  
B J Wold

We have found that the mouse metallothionein-I (MT-I) gene promoter functions in an unusual, compound manner. It directs both TATA-dependent and TATA-independent modes of transcription in vivo. The TATA-dependent message is initiated at the previously characterized +1 transcription start site and is the predominant species in most tissues. In many cell types it is metal inducible. The TATA-independent initiation sites are distributed over the 160 bp upstream of the previously characterized +1 start site, and the RNA products are present in all tissues examined. Only in testis, however, do the TATA-independent transcripts predominate, accumulating to highest levels in pachytene-stage meiotic cells and early spermatids. Unlike the TATA-dependent +1 transcript, these RNAs are not induced by metal, even in cultured cells in which the +1 species is induced. Transfection studies of site-directed mutants show that destruction of the TATA element drastically alters the ratio of the two RNA classes in cells in which the +1 transcripts normally dominates. In TATA-minus mutants, the TATA-independent RNAs become the most prevalent, although they remain refractory to metal induction. Thus, the MT-I promoter utilizes two different types of core promoter function within a single cell population. The two different types of core promoter respond very differently to environmental stimuli, and the choice between them appears to be regulated in a tissue-specific fashion.


Endocrinology ◽  
2005 ◽  
Vol 146 (5) ◽  
pp. 2481-2488 ◽  
Author(s):  
Amrita Kamat ◽  
Margaret E. Smith ◽  
John M. Shelton ◽  
James A. Richardson ◽  
Carole R. Mendelson

Abstract The human aromatase (hCYP19) gene is controlled by tissue-specific promoters that lie upstream of tissue-specific first exons. Placenta-specific exon I.1 lies approximately 100,000 bp upstream of exon II. Previously, we observed that genomic sequences within 501 bp upstream of exon I.1 mediate placenta-specific expression. In the present study, transgenic mice were created carrying hCYP19I.1−246:hGH/hGX, hCYP19I.1−201:hGH, and hCYP19I.1−125:hGH fusion genes to further delineate 5′-flanking sequences within 501 bp of exon I.1 that are required to mediate placenta-specific hCYP19 gene expression. As little as 246 bp of hCYP19 exon I.1 5′-flanking sequence was sufficient to direct placenta-specific expression in transgenic mice. By contrast, transgenes containing 201 or 125 bp of exon I.1 5′-flanking DNA were not expressed in mouse placenta. Furthermore, hCYP19I.1−246:hGX transgene expression was developmentally regulated; expression was observed as early as embryonic d 7.5 (E7.5) in several cells of the trophoblast ectoderm, on E8.5 in some trophoblast giant cells, and by E9.5 in giant cells and the labyrinthine layer. By contrast, expression of the hCYP19I.1−501:hGH transgene was first observed on E10.5 and was restricted to the labyrinthine layer, which is most analogous to the human syncytiotrophoblast. This suggests the presence of regulatory elements between −501 and −246 bp that may bind inhibitory transcription factors expressed in giant cells. These findings from transgenic experiments together with deletion mapping studies using transfected human placental cells indicate that the concerted interaction of strong placenta-specific enhancers and silencers within this 501-bp region mediate labyrinthine and syncytiotrophoblast-specific CYP19 gene expression.


Sign in / Sign up

Export Citation Format

Share Document