Renal hemodynamics and sodium excretion in stroke-prone spontaneously hypertensive rats

1981 ◽  
Vol 241 (3) ◽  
pp. F244-F249 ◽  
Author(s):  
A. Nagaoka ◽  
M. Kakihana ◽  
M. Suno ◽  
K. Hamajo

Renal blood flow (RBF), renal vascular resistance (RVR), glomerular filtration rate (GFR), and sodium and water excretion were measured in anesthetized stroke-prone spontaneously hypertensive rats (SHRSP), spontaneously hypertensive rats (SHR), and control Wistar-Kyoto rats (WKY) at 9 wk of age. Mean arterial pressure in SHRSP and SHR was significantly higher than that in WKY. RBF was slightly increased in SHR and decreased in SHRSP. RVR was markedly elevated only in SHRSP. In both strains of SHR, GFR was significantly increased but water and sodium excretion were similar. When renal perfusion pressure in both strains of SHR was reduced to a level similar to that of WKY by aortic constriction, RBF was slightly but significantly reduced in both SHRSP and SHR, and GFR only in SHRSP. RVR in SHRSP was still higher. Sodium and water excretion were markedly decreased in both SHR and SHRSP. The data suggest that SHRSP are characterized by an alteration in renal hemodynamics at a young age and support the hypothesis that kidneys of SHR require a higher arterial pressure than kidneys of WKY to excrete a given amount of salt and water.

1985 ◽  
Vol 248 (2) ◽  
pp. F199-F205 ◽  
Author(s):  
R. J. Roman ◽  
A. W. Cowley

The renal responses to changes in perfusion pressure (RPP) were studied in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) to determine whether an abnormality in the pressure-diuresis phenomenon could be involved in the resetting of kidney function in hypertension. Differences in the neural and endocrine background to the kidneys were minimized by denervating the kidney and by holding plasma vasopressin, aldosterone, corticosterone, and norepinephrine levels constant by intravenous infusion. In WKY, increasing renal perfusion pressure 54 mmHg, from 103 to 157 mmHg, produced a ninefold increase in urine flow and sodium excretion with no measurable change in renal blood flow (RBF) or glomerular filtration rate (GFR). In SHR, increasing renal perfusion pressure 54 mmHg, from 133 to 187 mmHg, produced only a fourfold increase in urine flow and sodium excretion. GFR, RBF, and peritubular capillary pressures were well autoregulated and were similar in the SHR and WKY at pressures above 110 mmHg. These results indicate the presence of intrinsic changes in the kidney of SHR that enhance fractional tubular reabsorption and impair the pressure-diuresis response. This blunting of the renal pressure-diuresis phenomenon in SHR may represent the functional resetting of the kidney that is necessary for sustained hypertension.


1991 ◽  
Vol 260 (5) ◽  
pp. R889-R893 ◽  
Author(s):  
K. Uchino ◽  
E. D. Frohlich ◽  
T. Nishikimi ◽  
T. Isshiki ◽  
M. B. Kardon

To determine alpha 1-adrenergic receptor responsiveness of the renal vasculature in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR), phenylephrine (2.5 or 5.0 micrograms.kg-1.min-1 iv) or saline was infused. Effective renal blood flow (ERBF) and glomerular filtration rate were determined by p-aminohippuric acid and inulin clearances, respectively. Peritubular capillary, proximal tubular, and stop-flow pressures (SFP) were measured by micropuncture. Phenylephrine decreased ERBF (6.27 +/- 0.48 to 4.55 +/- 0.65 ml.min-1.g-1; P less than 0.05) and increased arterial pressure and SFP (31.5 +/- 0.9 to 34.2 +/- 1.0 mmHg) in SHR. It only increased arterial pressure and ERBF in WKY without changing SFP. Afferent arteriolar resistance (RA) and glomerular capillary pressure (PG) remained unchanged, whereas efferent resistance (RE) decreased in WKY; in contrast, RA, RE, and PG increased in SHR (RA 21.2 +/- 2.0 to 38.1 +/- 7.1 mmHg.ml-1.min.g, RE 6.9 +/- 0.6 to 13.9 +/- 3.8 mmHg.ml-1.min.g; and PG 49.6 +/- 0.9 to 53.7 +/- 1.1 mmHg; all P less than 0.05). These data demonstrated increased SHR afferent and efferent arteriolar responsiveness; WKY efferent arteriolar hyperresponsiveness was not observed. The findings support the concept of augmented intrarenal vascular alpha 1-adrenergic responsiveness in hypertension that may predispose to subsequent glomerular hypertension.


2007 ◽  
Vol 292 (2) ◽  
pp. H814-H819 ◽  
Author(s):  
Luis C. Matavelli ◽  
Xiaoyan Zhou ◽  
Jasmina Varagic ◽  
Dinko Susic ◽  
Edward D. Frohlich

We have previously shown that salt excess has adverse cardiac effects in spontaneously hypertensive rats (SHR), independent of its increased arterial pressure; however, the renal effects have not been reported. In the present study we evaluated the role of three levels of salt loading in SHR on renal function, systemic and renal hemodynamics, and glomerular dynamics. At 8 wk of age, rats were given a 4% ( n = 11), 6% ( n = 9), or 8% ( n = 11) salt-load diet for the ensuing 8 wk; control rats ( n = 11) received standard chow (0.6% NaCl). Rats had weekly 24-h proteinuria and albuminuria quantified. At the end of salt loading, all rats had systemic and renal hemodynamics measured; glomerular dynamics were specially studied by renal micropuncture in the control, 4% and 6% salt-loaded rats. Proteinuria and albuminuria progressively increased by the second week of salt loading in the 6% and 8% salt-loaded rats. Mean arterial pressure increased minimally, and glomerular filtration rate decreased in all salt-loaded rats. The 6% and 8% salt-loaded rats demonstrated decreased renal plasma flow and increased renal vascular resistance and serum creatinine concentration. Furthermore, 4% and 6% salt-loaded rats had diminished single-nephron plasma flow and increased afferent and efferent arteriolar resistances; glomerular hydrostatic pressure also increased in the 6% salt-loaded rats. In conclusion, dietary salt loading as low as 4% dramatically deteriorated renal function, renal hemodynamics, and glomerular dynamics in SHR independent of a minimal further increase in arterial pressure. These findings support the concept of a strong independent causal relationship between salt excess and cardiovascular and renal injury.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tomomi Nagayama ◽  
Yoshitaka Hirooka ◽  
Akiko Chishaki ◽  
Masao Takemoto ◽  
Yasushi Mukai ◽  
...  

Objective.Many previous clinical studies have suggested that atrial fibrillation (AF) is closely associated with hypertension. However, the benefits of antihypertensive therapy on AF are still inconsistent, and it is necessary to explore the factors augmenting AF in hypertensive rats. The aim of the present study was to investigate the correlation between arterial pressure or voltage stimulus and to the duration of electrically induced AF in normotensive or hypertensive rats.Methods.AF was reproducibly induced by transesophageal atrial burst pacing in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). We did the burst pacing at high (20 V) or low (5 V) voltage.Results.Duration of AF did not correlate with systolic blood pressure (SBP) and stimulus voltage in WKY. However, only in SHR, duration of AF with high stimulus voltage significantly correlated with SBP and was significantly longer in high than in low voltage stimulus.Discussion and Conclusion.Duration of AF is augmented by high voltage stimulus with higher blood pressure in SHR.


1994 ◽  
Vol 77 (3) ◽  
pp. 1101-1107 ◽  
Author(s):  
S. P. Janssens ◽  
B. T. Thompson ◽  
C. R. Spence ◽  
C. A. Hales

Chronic hypoxic pulmonary hypertension involves both vasoconstriction and vascular remodeling. Spontaneously hypertensive rats (SHR) have an increased systemic vascular resistance and a greater responsiveness to constricting stimuli. We hypothesized that, in contrast to age-matched normotensive Wistar-Kyoto rats (WKY), SHR also display spontaneous pulmonary hypertension in normoxia and increased vascular response to acute and chronic hypoxia. Baseline mean pulmonary arterial pressure (PAP) and total pulmonary resistance (TPR) were higher in SHR than in WKY. With acute hypoxia (10% O2 for 15 min), PAP increased to the same extent in SHR and WKY and cardiac output (CO) was unchanged in WKY but increased in SHR. Thus, the rise in PAP in the SHR might be accounted for by the rise in CO, as TPR did not rise, but not that in the WKY, as TPR increased. After 12 days in hypoxia (10% O2), mean arterial pressure was unchanged in WKY but decreased significantly in SHR without a change in CO. PAP increased by 59% in SHR and 54% in WKY when the rats were taken from the hypoxic chamber for 1 h. Acute hypoxic challenge caused a further increase in PAP only in WKY. Medial wall thickness of alveolar duct and terminal bronchial vessels was similar in WKY and SHR after chronic hypoxia. We conclude that SHR exhibit mild baseline pulmonary hypertension in normoxia and that chronic hypoxia does not produce a disproportionate increase in SHR pulmonary vascular remodeling and pulmonary hypertension.


1978 ◽  
Vol 235 (5) ◽  
pp. F409-F416 ◽  
Author(s):  
Gerald F. DiBona ◽  
Linda L. Rios

The mechanism of exaggerated diuresis and natriuresis was studied in spontaneously hypertensive rats (SHR) by renal clearance and micropuncture techniques. Control normotensive rats of the same age and sex [Wistar-Kyoto rats (WKY)] were also studied. During the hydropenic control and the volume-expansion experimental periods absolute and fractional water and sodium excretion were greater in SHR than in WKY. Although fractional and absolute water and sodium reabsorption were similar along the proximal convolution in SHR and WKY, fractional and absolute water reabsorption in Henle's loop was less in SHR than in WKY. Hydrostatic and colloid osmotic pressures in the cortical peritubular microvasculature were similar in WKY and SHR. Acute normalization of renal perfusion pressure by aortic constriction reversed the exaggerated diuresis and natriuresis in SHR by halving the filtered load of water and sodium; whole kidney and single nephron glomerular filtration rates and blood flows decreased by 50%. It is concluded that the exaggerated diuresis and natriuresis of the spontaneously hypertensive rat is caused by a decreased reabsorption in the loop of Henle. The mechanism of this decreased reabsorption in the loop of Henle cannot be explained by alterations in the measured physical forces in the renal cortical microvasculature. natriuresis; autoregulation; volume expansion Submitted on November 15, 1977 Accepted on June 7, 1978


2002 ◽  
Vol 282 (6) ◽  
pp. H2336-H2345 ◽  
Author(s):  
Linda F. Hayward ◽  
Alecia P. Riley ◽  
Robert B. Felder

We examined the effect of α2-adrenoreceptor blockade in the nucleus of the solitary tract (NTS) on baroreflex responses elicited by electrical stimulation of the left aortic depressor nerve (ADN) in urethane-anesthetized spontaneously hypertensive rats (SHR, n = 11) and normotensive Wistar-Kyoto rats (WKY, n = 11). ADN stimulation produced a frequency-dependent decrease in mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and heart rate (HR). In SHR, unilateral microinjection of idazoxan into the NTS markedly reduced baroreflex control of MAP, RSNA, and HR and had a disproportionately greater influence on baroreflex control of MAP than of RSNA. In WKY, idazoxan microinjections did not significantly alter baroreflex function relative to control vehicle injections. These results suggest that baroreflex regulation of arterial pressure in SHR is highly dependent on NTS adrenergic mechanisms. The reflex regulation of sympathetic outflow to the kidney is less influenced by the altered α2-adrenoreceptor mechanisms in SHR.


2010 ◽  
Vol 299 (1) ◽  
pp. R291-R297 ◽  
Author(s):  
Cristiana A. Ogihara ◽  
Gerhardus H. M. Schoorlemmer ◽  
Adriana C. Levada ◽  
Tania C. Pithon-Curi ◽  
Rui Curi ◽  
...  

Inhibition of the commissural nucleus of the solitary tract (commNTS) induces a fall in sympathetic nerve activity and blood pressure in spontaneously hypertensive rats (SHR), which suggests that this subnucleus of the NTS is a source of sympathoexcitation. Exercise training reduces sympathetic activity and arterial pressure. The purpose of the present study was to investigate whether the swimming exercise can modify the regional vascular responses evoked by inhibition of the commNTS neurons in SHR and normotensive Wistar-Kyoto (WKY) rats. Exercise consisted of swimming, 1 h/day, 5 days/wk for 6 wks, with a load of 2% of the body weight. The day after the last exercise session, the rats were anesthetized with intravenous α-chloralose, tracheostomized, and artificially ventilated. The femoral artery was cannulated for mean arterial pressure (MAP) and heart rate recordings, and Doppler flow probes were placed around the lower abdominal aorta and superior mesenteric artery. Microinjection of 50 mM GABA into the commNTS caused similar reductions in MAP in swimming and sedentary SHR (−25 ± 6 and −30 ± 5 mmHg, respectively), but hindlimb vascular conductance increased twofold in exercised vs. sedentary SHR (54 ± 8 vs. 24 ± 5%). GABA into the commNTS caused smaller reductions in MAP in swimming and sedentary WKY rats (−20 ± 4 and −16 ± 2 mmHg). Hindlimb conductance increased fourfold in exercised vs. sedentary WKY rats (75 ± 2% vs. 19 ± 3%). Therefore, our data suggest that the swimming exercise induced changes in commNTS neurons, as shown by a greater enhancement of hindlimb vasodilatation in WKY vs. SHR rats in response to GABAergic inhibition of these neurons.


1991 ◽  
Vol 260 (1) ◽  
pp. R21-R26 ◽  
Author(s):  
Y. Sato ◽  
K. Ando ◽  
E. Ogata ◽  
T. Fujita

We studied the effects of K supplementation (8% KCl) for 4 wk on blood pressure (BP), Na space, and renal hemodynamics in 5-wk-old, spontaneously hypertensive rats (SHR) or age-matched Wistar-Kyoto rats (WKY) eating normal-NaCl (0.66%) or high-NaCl (8%) diet. In WKY, high-Na and/or high-K diets had no effects on BP. In SHR, Na load accelerated the development of hypertension, whereas K supplementation did not affect BP of normal-Na SHR but attenuated the increase in BP with Na load. Correspondingly, Na load in SHR significantly increased renal vascular resistance (RVR), and K supplementation attenuated the increased RVR of Na-loaded SHR. Moreover, Na space of SHR was increased compared with that of WKY, and although Na load did not affect Na space, K supplementation tended to decrease Na space in SHR. These results indicate that 9-wk-old SHR is relatively volume-expanded compared with age-matched WKY, and K supplementation could improve the lowered slope of the pressure-Na excretion relationship in SHR, resulting in maintenance of Na balance. Thus the data suggest that changes in RVR, which might be intimately related to renal function for Na excretion, contribute to both salt sensitivity of SHR and antihypertensive action of K supplementation in Na-loaded SHR.


Sign in / Sign up

Export Citation Format

Share Document