Application of the disequilibrium pH method to investigate the mechanism of urinary acidification

1983 ◽  
Vol 245 (5) ◽  
pp. F535-F544
Author(s):  
T. D. DuBose

DuBose, Thomas D., Jr. Application of the disequilibrium pH method to investigate the mechanism of urinary acidification. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F535-F544, 1983.--The cellular mechanism of renal bicarbonate reabsorption has been debated for four decades. Recent technological advances have allowed distinction between primary bicarbonate reabsorption and a proton secretory mechanism. The disequilibrium pH method has been applied widely for this purpose and has supported the latter hypothesis uniformly. The demonstration of elevated values for PCO2 in tubular and vascular structures of the renal cortex has not altered this view. Indeed, by employing a newly developed method for measurement of equilibrium pH in vivo that permits contact with the environment within the tubule lumen to continue, we demonstrated an acid disequilibrium pH in the proximal tubule after carbonic anhydrase inhibition equal to -0.68 pH units. A spontaneous disequilibrium pH was not present in the distal tubule during control conditions or during metabolic alkalosis but was demonstrated during combined respiratory acidosis-metabolic alkalosis. This finding agrees qualitatively with observed rates of bicarbonate reabsorption in the perfused distal tubule in vivo. With use of similar techniques, an acid disequilibrium pH in conjunction with elevated values for PCO2 was observed in the papillary collecting duct. Thus, proton secretion appears to be the predominant mechanism of bicarbonate reabsorption in superficial nephrons and explains, as well, the means by which the urine-to-blood PCO2 gradient in alkaline urine is established.

1981 ◽  
Vol 240 (2) ◽  
pp. F138-F146 ◽  
Author(s):  
T. D. DuBose ◽  
L. R. Pucacco ◽  
N. W. Carter

The recent demonstration of elevated PCO2 in structures of the rat renal cortex indicated that previous determinations of disequilibrium pH (pHDq), and thus the differentiation of H+ secretion from bicarbonate reabsorption per se, required further evaluation. A new aspiration pH electrode was developed to allow tubule fluid to achieve chemical equilibrium at the PCO2 prevailing in vivo. In control and bicarbonate-loaded rats a pHDq was not observed in either proximal or distal tubules. After intravenous benzolamide a significant acid pHDq was observed in the proximal (but not the distal) nephron, and increased further during metabolic alkalosis. During combined metabolic alkalosis and respiratory acidosis a significant pHDq was present in the distal but not in the proximal tubule. Aldosterone administration to bicarbonate-loaded, hypercapnic rats did not alter the distal pHDq further. When present, the pHDq in the distal tubule was obliterated by carbonic anhydrase infusion. We conclude that proximal but not distal tubule fluid is in functional contact with carbonic anhydrase; the enzyme is in excess in the proximal lumen and H2CO3 did not accumulate even during conditions associated with increased H+ secretion; the basal rate of H+ secretion in the distal nephron accessible to cortical micropuncture is less than previously assumed. The data support the view that H+ secretion is the major mechanism of renal bicarbonate reabsorption.


2002 ◽  
Vol 282 (2) ◽  
pp. F256-F264 ◽  
Author(s):  
Raif Musa-Aziz ◽  
Maria Luisa Morais Barreto-Chaves ◽  
Margarida De Mello-Aires

10.1152/ajprenal.00056.2001. Peritubular arginine vasopressin (AVP) regulates bicarbonate reabsorption in the cortical distal tubule via V1 and V2 receptors. The dose-dependent effects of peritubular AVP on net bicarbonate reabsorption ( J HCO[Formula: see text] ) were evaluated by stationary microperfusion of in vivo early (ED; distal convoluted tubule) and late distal (LD; connecting tubule and initial collecting duct) segments of rat kidney, using double-barreled H+-sensitive, ion-exchange resin/reference (1 M KCl) microelectrodes. AVP (10−11 M) perfused into peritubular capillaries increased J HCO[Formula: see text] , compared with basal levels during intact capillary perfusion with blood, in ED and LD segments. AVP (10−9 M) also increased J HCO[Formula: see text] in both segments, but the effect of AVP (10−11 M) was significantly higher. A specificV1-receptor antagonist alone or with AVP (10−11 or 10−9 M) reduced J HCO[Formula: see text] below basal levels. A specific V2-receptor antagonist alone or plus AVP (10−11 M) did not affect J HCO[Formula: see text] but increased AVP (10−9 M)-mediated stimulation. 8-Bromoadenosine 3′,5′-cyclic monophosphate alone reduced J HCO[Formula: see text] below basal levels and also reduced AVP (10−11 M)-mediated stimulation. (Deamino-Cys1, d-Arg8) vasopressin (a V2-selective agonist) also reduced J HCO[Formula: see text] below basal levels. These results show that peritubular AVP stimulates J HCO[Formula: see text] in ED and LD segments via basolateral V1 receptors and that basolateral V2 receptors have a dose-dependent inhibitory effect mediated by cAMP. The data also indicate that endogenous AVP stimulates distal J HCO[Formula: see text] via basolateral V1 receptors.


1985 ◽  
Vol 249 (1) ◽  
pp. F107-F116
Author(s):  
J. P. Frommer ◽  
D. E. Wesson ◽  
M. E. Laski ◽  
N. A. Kurtzman

The renal handling of bicarbonate during acute metabolic alkalosis was examined in Munich-Wistar rats using micropuncture techniques. Group I received an acute bicarbonate load, and fractional delivery of total CO2 (tCO2) (FDtCO2) to the superficial late distal tubule (LD) was significantly lower than to the base of the papillary collecting duct (B) (18.4 +/- 1.7 vs. 22.9 +/- 1.5%; P less than 0.01), indicating net addition of bicarbonate between LD and B. When acutely bicarbonate-loaded rats had their deep nephrons destroyed with bromoethylamine hydrobromide (BEA) (group II), net addition of tCO2 between LD and B was abolished and net reabsorption uncovered (FDtCO2 LD: 28.0 +/- 3.6 vs. B: 17.5 +/- 2.5%; P less than 0.01). The infusion of amiloride (2.5 mg/kg body wt) to alkalotic rats treated with BEA (group III) completely inhibited distal bicarbonate reabsorption but did not reestablish addition (FDtCO2 LD: 27.6 +/- 1.6 vs. B: 26.1 +/- 3.7%; P = NS). The values obtained for sham-operated animals (group IV) were the same for group I. The patterns that were observed between LD and B were reproduced for the four groups of animals when FDtCO2 LD was compared with the fractional excretion of bicarbonate in the urine of the intact contralateral kidney. These studies suggest that juxtamedullary nephrons contribute a higher load of bicarbonate than superficial nephrons to the final urine during acute metabolic alkalosis in the rat.


1991 ◽  
Vol 69 (11) ◽  
pp. 1784-1788 ◽  
Author(s):  
David H. Vandorpe ◽  
Steven P. Nadler ◽  
David Z. Levine

Rebound metabolic alkalosis is a transient alkalemia that is seen during recovery from NH4Cl-induced metabolic acidosis. The persistent elevation of plasma bicarbonate concentration is the result of continuing excretion of net acid by the kidney. Bicarbonate transport by inner medullary collecting ducts has been reported by others to proceed normally (i.e., bicarbonate reabsorption continues in this segment) during rebound metabolic alkalosis. No other segmental responses have been evaluated. Since the surface distal tubule of the rat is known to both reabsorb and secrete bicarbonate in vivo, it was of interest to determine the response of this segment. Our results show that the distal tubule microperfused in vivo during rebound metabolic alkalosis continues to reabsorb significant amounts of bicarbonate, despite the presence of systemic alkalemia that we have previously shown to be associated with distal tubule bicarbonate secretion.Key words: rebound metabolic alkalosis, distal tubule, micropuncture, bicarbonate reabsorption.


1983 ◽  
Vol 244 (5) ◽  
pp. F497-F503 ◽  
Author(s):  
T. D. DuBose ◽  
M. S. Lucci ◽  
R. J. Hogg ◽  
L. R. Pucacco ◽  
J. P. Kokko ◽  
...  

The purpose of this study was to determine and compare pH, PCO2, and fractional bicarbonate delivery in both superficial and juxtamedullary nephrons by microelectrode techniques and microcalorimetry in the rat in vivo in order to define more clearly the role of deeper nephron segments in urinary acidification. Values for pH and total CO2 concentration ([tCO2]) at the bend of Henle's loop (LOH) (7.39 +/- 0.04 units and 20.5 +/- 1.5 mM) were significantly greater and the PCO2 was significantly less (36.6 +/- 1.5 mmHg) than values for these same parameters in the superficial late proximal tubule (LPT) (6.78 +/- 0.03 units, 8.1 +/- 1.2 mM, and 63.2 +/- 1.0 mmHg, P less than 0.001). The fraction of filtered bicarbonate delivered to the LPT and LOH did not differ, however (12.2 +/- 2.5 vs. 9.0 +/- 0.8%). The pH and PCO2 values in the late distal tubule (6.59 +/- 0.04 units and 64.0 +/- 1.3 mmHg) were significantly greater than at the base (6.24 +/- 0.07 units and 34.5 +/- 1.5 mmHg) and tip (6.12 +/- 0.03 units and 35.2 +/- 1.2 mmHg) of the papillary collecting duct. The [tCO2] in the LOH and an adjacent vasa recta was compared and did not differ significantly (20.5 +/- 1.5 vs. 21.2 +/- 1.3 mM, P greater than 0.05). In summary, we have demonstrated significant alkalinization of tubule fluid in the deep LOH as a result of water abstraction and CO2 diffusion from the nephron. Our results suggest that a spontaneous disequilibrium pH may not exist in the LOH. Furthermore, similar values for [tCO2] in vasa recta and the LOH suggest that passive HCO-3 reabsorption in the thin ascending limb of Henle would be unlikely and does not contribute to the "loop" component of bicarbonate reabsorption.


1994 ◽  
Vol 266 (6) ◽  
pp. F919-F925 ◽  
Author(s):  
D. Z. Levine ◽  
M. Iacovitti ◽  
S. Buckman ◽  
D. Vandorpe ◽  
V. Harrison ◽  
...  

During metabolic alkalosis (MA) associated with 2 days of dietary chloride restriction, there is net bicarbonate secretion by rat distal tubules in vivo, whereas after 5 wk of chloride depletion alkalosis there is net bicarbonate reabsorption. To examine unidirectional components of net bicarbonate reabsorption during chronic MA, we measured distal tubule unidirectional bicarbonate secretion (Jsec) and reabsorption (Jreab), as well as the inhibitor sensitivity of Jreab. In control, 2-day, and 7-day alkalosis, Jsec was similar. Jreab, however, was only present in 7-day MA (17 +/- 3 pmol.min-1.mm-1, P < 0.05). This Jreab was completely suppressed by perfusion with 10(-7) M bafilomycin A1, partially suppressed with 10(-5) M Schering (Sch)-28080 (4 +/- 2 pmol.min-1.mm-1, P < 0.1), and converted into a secretory flux by 3 mM amiloride. We conclude that adaptation to chloride depletion MA from the acute secretory phase to the chronic state, where plasma bicarbonate is sustained at elevated levels, does not involve suppression of distal tubule Jsec but rather enhanced Jreab, which is sensitive to bafilomycin, Sch-28080, and amiloride.


2002 ◽  
Vol 283 (6) ◽  
pp. F1252-F1266 ◽  
Author(s):  
Alan M. Weinstein

A mathematical model of the rat collecting duct (CD) is used to examine the effect of delivered load of bicarbonate and nonbicarbonate buffer on urinary acidification. Increasing the delivered load of HCO[Formula: see text] produces bicarbonaturia, and, with luminal carbonic anhydrase absent, induces a disequilibrium luminal pH and a postequilibration increase in urinary Pco 2. At baseline flows, this disequilibrium disappears when luminal carbonic anhydrase rate coefficients reach 1% of full catalysis. The magnitude of the equilibration Pco 2 depends on the product of urinary acid phosphate concentration and the disequilibrium pH. Thus, although increasing phosphate delivery to the CD decreases the disequilibrium pH, the increase in urinary phosphate concentration yields an overall increase in postequilibration Pco 2. In simulations of experimental HCO[Formula: see text] loading in the rat, model predictions of urinary Pco 2 exceed the measured Pco 2 of bladder urine. In part, the higher model predictions for urinary Pco 2 may reflect higher urinary flow rates and lower urinary phosphate concentrations in the experimental preparations. However, when simulation of CD function during HCO[Formula: see text] loading acknowledges the high ambient renal medullary Pco 2 (5), the predicted urinary Pco 2 of the model CD is yet that much greater. This discrepancy cannot be resolved within the model but requires additional experimental data, namely, concomitant determination of urinary buffer concentrations within the tubule fluid sampled for Pco 2 and pH. This model should provide a means for simulating formal testing of urinary acidification and thus for examining hypotheses regarding transport defects underlying distal renal tubular acidosis.


1993 ◽  
Vol 264 (2) ◽  
pp. F267-F273
Author(s):  
H. Saxenhofer ◽  
W. R. Fitzgibbon ◽  
R. V. Paul

Urodilatin (URO) [ANP-(95-126)] is an analogue of atrial natriuretic peptide (alpha-ANP) [ANP-(99-126)] that was first isolated from human urine. In rat mesangial cells, URO competed with high affinity for non-guanylate cyclase-coupled ANPR-C receptors [concentration at which 50% labeled ligand is displaced (IC50) approximately 70 pM], but with lesser affinity to the guanylate cyclase-linked ANPR-A receptors (IC50 approximately 800 pM). alpha-ANP bound to both receptors with similar affinity [dissociation constant (Kd) approximately 150 pM]. In papillary collecting duct homogenates, which possess only ANPR-A receptors, the apparent Kd value averaged 229 pM for alpha-ANP and 2.7 nM for URO. Intravenous URO was at least as potent and effective as alpha-ANP in inducing diuresis and natriuresis in anesthetized rats, but URO was approximately 10-fold less potent in stimulating guanosine 3',5'-cyclic monophosphate generation in mesangial and inner medullary collecting duct cells. We conclude that URO has a lesser affinity than alpha-ANP for guanylate cyclase-coupled ANP receptors in the kidney and that the relative natriuretic potency of URO in vivo cannot be directly attributed to its binding characteristics with ANPR-A receptors.


1988 ◽  
Vol 254 (4) ◽  
pp. F477-F483 ◽  
Author(s):  
A. van de Stolpe ◽  
R. L. Jamison

Micropuncture collections were obtained from the terminal collecting duct (CD) at base and tip of the renal papilla of the rat. Group 1 was studied before and during infusion with atrial natriuretic peptide (ANP), group 2 was administered the vehicle only, and group 3 received acetazolamide to increase sodium delivery to the base to a similar extent as after ANP. ANP caused a decrease in blood pressure, a slight increase in GFR, natriuresis, and diuresis. Sodium delivery to the collecting duct at the base of the papilla increased. Between base and tip, sodium reabsorption was inhibited. Tubule fluid sodium concentration (TFNa) was increased at the base and remained high at the tip; in contrast TFNa fell between base and tip in control and acetazolamide groups. After acetazolamide, sodium reabsorption in the terminal CD was not inhibited. These results demonstrate that in vivo ANP 1) increases the delivery of sodium to the terminal CD and 2) inhibits sodium reabsorption in the terminal CD. The findings for chloride were similar to those for sodium. ANP also increased delivery of H2O, K, Ca, and Mg to the CD at the papillary base but did not significantly affect their transport by the terminal CD.


1987 ◽  
Vol 253 (2) ◽  
pp. F277-F281 ◽  
Author(s):  
J. L. Garvin ◽  
M. A. Knepper

Bicarbonate, ammonia, and fluid transport were studied in isolated perfused proximal straight tubules from rats. The mean rate of fluid absorption (0.77 nl X min-1 X mm-1) and the mean rate of total CO2 absorption (42 pmol X min-1 X mm-1) exceeded corresponding rates measured previously in rabbit proximal straight tubules. The limiting total CO2 concentration when the tubules were perfused at slow flow rates was 5 mM, a value similar to those reported previously for rat proximal convoluted tubules and thick ascending limbs. When rat proximal straight tubules were perfused and bathed with solutions containing 1 mM total ammonia at slow perfusion rates, the measured total ammonia concentration in collected fluid rose to a level predicted by the diffusion trapping model of ammonia secretion in the absence of a luminal disequilibrium pH. We conclude the proximal straight tubule of the rat can absorb bicarbonate at a rate that can account for a large portion of the bicarbonate absorption measured in vivo between the late proximal convoluted tubule and the early distal tubule, the rat proximal straight tubule is capable of transepithelial ammonia secretion, most likely by NH3 diffusion down a concentration gradient generated by luminal acidification, and the rat proximal straight tubule apparently does not generate a luminal disequilibrium pH despite the occurrence of proton secretion, implying the presence of endogenous luminal carbonic anhydrase.


Sign in / Sign up

Export Citation Format

Share Document