Sodium-dependent bicarbonate absorption by cortical thick ascending limb of rat kidney

1985 ◽  
Vol 248 (6) ◽  
pp. F821-F829 ◽  
Author(s):  
D. W. Good

In vitro microperfusion experiments were performed to investigate the mechanism of bicarbonate absorption in the cortical thick ascending limb of the rat. Tubules were perfused at 1.0-1.5 nl X min-1 X mm-1 and bicarbonate concentration was 25 mM in the perfusate and bath. Bicarbonate absorption rates were determined by microcalorimetry. Control tubules absorbed bicarbonate at a mean rate of 9.5 +/- 0.6 pmol X min-1 X mm-1. The limiting luminal bicarbonate concentration was approximately 5 mM for tubules perfused at slow rates with 25 mM bicarbonate in the bath. Acetazolamide (10(-4)M) in the bath reduced bicarbonate absorption by 76% without significant effect on transepithelial voltage. Removing sodium from the perfusate and bath or removing potassium from the bath reduced bicarbonate absorption and transepithelial voltage to near zero. Adding amiloride (5 X 10(-4) or 10(-3) M) to the perfusate reduced bicarbonate absorption by 60-75% without detectable effect on transepithelial voltage. Adding furosemide (10(-4)M) to the perfusate increased bicarbonate absorption significantly by 40-50% while decreasing transepithelial voltage from 17 to 1.8 mV. Thus, bicarbonate absorption by cortical thick ascending limbs requires carbonic anhydrase activity and sodium transport but is not dependent on transepithelial voltage. When considered together, the results are consistent with mediation of the bicarbonate absorption by apical membrane sodium-hydrogen exchange.

1984 ◽  
Vol 247 (1) ◽  
pp. F35-F44 ◽  
Author(s):  
D. W. Good ◽  
M. A. Knepper ◽  
M. B. Burg

Ammonia and bicarbonate transport by the thick ascending limb of rat kidney was studied to determine whether this segment contributes to the regulation of renal ammonia and net acid excretion. Cortical and medullary thick ascending limbs were perfused in vitro at 1.0-1.5 nl X min-1 X mm-1 with HCO3-buffered solutions. There was no significant net fluid transport. With 4 mM ammonia in bath and perfusate, transepithelial voltage averaged 6-9 mV, lumen positive, and did not differ between the two segments. The mean ammonia concentration in collected tubule fluid was 2.8 mM with cortical segments and 2.3 mM with medullary segments, indicating net absorption of ammonia. Furosemide (10(-4) M) in the perfusate eliminated ammonia absorption in medullary thick ascending limbs and converted net absorption to net secretion in cortical thick ascending limbs. Furosemide reduced transepithelial voltage to near zero in every tubule. Cortical and medullary thick ascending limbs also absorbed bicarbonate, indicating that their tubule fluid was acidified relative to the bath. Therefore, absorption of ammonia could not have occurred by nonionic diffusion. The absorption most likely was due to direct transport of NH4+. The possible mechanisms involved are discussed, and it is proposed that absorption of ammonia by thick ascending limbs provides a source for its accumulation in the renal medulla and secretion into the collecting ducts.


2004 ◽  
Vol 287 (6) ◽  
pp. F1244-F1249 ◽  
Author(s):  
David W. Good ◽  
Bruns A. Watts ◽  
Thampi George ◽  
Jamie W. Meyer ◽  
Gary E. Shull

In the medullary thick ascending limb (MTAL) of rat kidney, inhibiting basolateral Na+/H+ exchange with either amiloride or nerve growth factor (NGF) results secondarily in inhibition of apical Na+/H+ exchange, thereby decreasing transepithelial HCO3− absorption. To assess the possible role of the Na+/H+ exchanger NHE1 in this regulatory process, MTALs from wild-type and NHE1 knockout (NHE1−/−) mice were studied using in vitro microperfusion. The rate of HCO3− absorption was decreased 60% in NHE1−/− MTALs (15.4 ± 0.5 pmol·min−1·mm−1 wild-type vs. 6.0 ± 0.5 pmol·min−1·mm−1 NHE1−/−). Transepithelial voltage, an index of the NaCl absorption rate, did not differ in wild-type and NHE1−/− MTALs. Basolateral addition of 10 μM amiloride or 0.7 nM NGF decreased HCO3− absorption by 45–49% in wild-type MTALs but had no effect on HCO3− absorption in NHE1−/− MTALs. Inhibition of HCO3− absorption by vasopressin and stimulation by hyposmolality, both of which regulate MTAL HCO3− absorption through primary effects on apical Na+/H+ exchange, were similar in wild-type and NHE1−/− MTALs. Thus the regulatory defect in NHE1−/− MTALs is specific for factors (bath amiloride and NGF) shown previously to inhibit HCO3− absorption through primary effects on basolateral Na+/H+ exchange. These findings demonstrate a novel role for NHE1 in transepithelial HCO3− absorption in the MTAL, in which basolateral NHE1 controls the activity of apical NHE3. Paradoxically, a reduction in NHE1-mediated H+ extrusion across the basolateral membrane leads to a decrease in apical Na+/H+ exchange activity that reduces HCO3− absorption.


2003 ◽  
Vol 285 (3) ◽  
pp. C608-C617 ◽  
Author(s):  
Snezana Petrovic ◽  
Liyun Ma ◽  
Zhaohui Wang ◽  
Manoocher Soleimani

SLC26A6 (or putative anion transporter 1, PAT1) is located on the apical membrane of mouse kidney proximal tubule and mediates [Formula: see text] exchange in in vitro expression systems. We hypothesized that PAT1 along with a [Formula: see text] exchange is present in apical membranes of rat kidney proximal tubules. Northern hybridizations indicated the exclusive expression of SLC26A6 (PAT1 or CFEX) in rat kidney cortex, and immunocytochemical staining localized SLC26A6 on the apical membrane of proximal tubules, with complete prevention of the labeling with the preadsorbed serum. To examine the functional presence of apical [Formula: see text] exchanger, proximal tubules were isolated, microperfused, loaded with the pH-sensitive dye BCPCF-AM, and examined by digital ratiometric imaging. The pH of the perfusate and bath was kept at 7.4. Buffering capacity was measured, and transport rates were calculated as equivalent base flux. The results showed that in the presence of basolateral DIDS (to inhibit [Formula: see text] cotransporter 1) and apical EIPA (to inhibit Na+/H+ exchanger 3), the magnitude of cell acidification in response to addition of luminal Cl– was ∼5.0-fold higher in the presence than in the absence of [Formula: see text]. The Cl–-dependent base transport was inhibited by ∼61% in the presence of 0.5 mM luminal DIDS. The presence of physiological concentrations of oxalate in the lumen (200 μM) did not affect the [Formula: see text] exchange activity. These results are consistent with the presence of SLC26A6 (PAT1) and [Formula: see text] exchanger activity in the apical membrane of rat kidney proximal tubule. We propose that SLC26A6 is likely responsible for the apical [Formula: see text] (and Cl–/OH–) exchanger activities in kidney proximal tubule.


1985 ◽  
Vol 248 (2) ◽  
pp. F282-F295 ◽  
Author(s):  
K. W. Beyenbach ◽  
E. Fromter

The electrophysiology of shark proximal tubules (Squalus acanthias) was investigated using conventional microelectrodes and cable analysis. Under in vitro perfusion with symmetrical Ringer solutions, tubule transepithelial resistance was 36.3 +/- 2.3 omega X cm2 (means +/- SE, n = 44). Other electrophysiological variables varied widely under control conditions. In unstimulated tubules (n = 16) the transepithelial voltage (VT,o) was lumen positive (1.2 +/- 0.2 mV), the basolateral membrane potential (Vbl,x) was -61.3 +/- 1.6 mV, and the fractional resistance of the apical membrane (fRa) was 0.67 +/- 0.02. Spontaneously stimulated tubules (n = 28) had lumen-negative VT,o values (-1.5 +/- 0.4 mV), low Vbl,x values (-41.3 +/- 1.7 mV), and low fRa values (0.30 +/- 0.02). The stimulated state can be induced in unstimulated tubules via treatment with cAMP. Multiple microelectrode impalements in a single tubule revealed epithelial cells sharing similar electrophysiological properties. Selective ion substitutions in the tubule lumen and peritubular bath uncovered an increased Cl conductance in the apical membrane of spontaneously and cAMP-stimulated tubules. Anthracene-9-carboxylic acid tended to reverse the stimulated state, and furosemide hyperpolarized Vbl,x. These results constitute the first evidence for secretory Cl transport in a renal proximal tubule. The electrophysiological responses to ion substitutions, stimulators, and inhibitors are strikingly similar to those of known Cl-transporting epithelia.


1994 ◽  
Vol 267 (4) ◽  
pp. F599-F605 ◽  
Author(s):  
W. H. Wang

We have used the patch-clamp technique to study the apical K+ channels in the thick ascending limb (TAL) of the rat kidney. Two types of K+ channels, a low-conductance and an intermediate-conductance K+ channel, were identified in both cell-attached and inside-out patches. We confirmed the previously reported intermediate-conductance K+ channel (72 pS), which is inhibited by millimolar cell ATP, acidic pH, Ba2+, and quinidine (4). We now report a second K+ channel in apical membrane of the TAL. The slope conductance of this low-conductance K+ channel is 30 pS, and its open probability is 0.80 in cell-attached patches. This channel is not voltage dependent, and application of 2 mM ATP in the bath inhibits channel activity in inside-out patches. In addition, 250 microM glyburide, an ATP-sensitive K+ channel inhibitor, blocks channel activity, whereas the same concentration of glyburide has no inhibitory effect on the 72-pS K+ channel. Channel activity of the 30-pS K+ channel decreases rapidly upon excision of patches (channel run down). Application of 0.1 mM ATP and the catalytic subunit of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) restores channel activity. Furthermore, addition of 0.1 mM 8-(4-chlorophenylthio)-cAMP or 50-100 pM vasopressin in the cell-attached patches increases channel activity. In conclusion, two types of K+ channels are present in the apical membrane of TAL of rat kidney, and PKA plays an important role in modulation of the low-conductance K+ channel activity.


1994 ◽  
Vol 103 (5) ◽  
pp. 917-936 ◽  
Author(s):  
B A Watts ◽  
D W Good

The renal medullary thick ascending limb (MTAL) actively reabsorbs ammonium ions. To examine the effects of NH4+ transport on intracellular pH (pHi) and the mechanisms of apical membrane NH4+ transport, MTALs from rats were isolated and perfused in vitro with 25 mM HCO3(-)-buffered solutions (pH 7.4). pHi was monitored using the fluorescent dye BCECF. In the absence of NH4+, the mean pHi was 7.16. Luminal addition of 20 mM NH4+ caused a rapid intracellular acidification (dpHi/dt = 11.1 U/min) and reduced the steady state pHi to 6.67 (delta pHi = 0.5 U), indicating that apical NH4+ entry was more rapid than entry of NH3. Luminal furosemide (10(-4) M) reduced the initial rate of cell acidification by 70% and the fall in steady state pHi by 35%. The residual acidification observed with furosemide was inhibited by luminal barium (12 mM), indicating that apical NH4+ entry occurred via both furosemide (Na(+)-NH4(+)-2Cl- cotransport) and barium-sensitive pathways. The role of these pathways in NH4+ absorption was assessed under symmetric ammonium conditions. With 4 mM NH4+ in perfusate and bath, mean steady state pHi was 6.61 and net ammonium absorption was 12 pmol/min/mm. Addition of furosemide to the lumen abolished net ammonium absorption and caused pHi to increase abruptly (dpHi/dt = 0.8 U/min) to 7.0. Increasing luminal [K+] from 4 to 25 mM caused a similar, rapid cell alkalinization. The pronounced cell alkalinization observed with furosemide or increasing [K+] was not observed in the absence of NH4+. In symmetric 4 mM NH4+ solutions, addition of barium to the lumen caused a slow intracellular alkalinization and reduced net ammonium absorption only by 14%. Conclusions: (a) ammonium transport is a critical determinant of pHi in the MTAL, with NH4+ absorption markedly acidifying the cells and maneuvers that inhibit apical NH4+ uptake (furosemide or elevation of luminal [K+]) causing intracellular alkalinization; (b) most or all of transcellular ammonium absorption is mediated by apical membrane Na(+)-NH4(+)-2Cl- cotransport; (c) NH4+ also permeates a barium-sensitive apical membrane transport pathway (presumably apical membrane K+ channels) but this pathway does not contribute significantly to ammonium absorption under physiologic (symmetric ammonium) conditions.


2002 ◽  
Vol 282 (4) ◽  
pp. F655-F668 ◽  
Author(s):  
Soline Bourgeois ◽  
Sandrine Massé ◽  
Michel Paillard ◽  
Pascal Houillier

Mechanisms involved in basolateral HCO[Formula: see text] transport were examined in the in vitro microperfused rat medullary thick ascending limb of Henle (MTALH) by microfluorometric monitoring of cell pH. Removing peritubular Cl− induced a cellular alkalinization that was inhibited in the presence of peritubular 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and blunted in the absence of external CO2/HCO[Formula: see text]. The alkalinization elicited by removing peritubular Cl−persisted in the bilateral absence of Na+, together with a voltage clamp. When studied in Cl−-free solutions, lowering peritubular pH induced a base efflux that was inhibited by peritubular DIDS or by the absence of external CO2/HCO[Formula: see text]. Removing peritubular Na+ elicited a cellular acidification that was accounted for by stimulation of a DIDS- and ethylisopropylamiloride (EIPA)-insensitive Na+-HCO[Formula: see text] cotransport and inhibition of a basolateral Na+/H+exchange. Increasing bath K+ induced an intracellular alkalinization that was inhibited in the absence of external CO2/HCO[Formula: see text]. At 2 mM, peritubular Ba2+, which inhibits the K+-Cl−cotransport, did not induce any change in transepithelial voltage but elicited a cellular alkalinization and inhibited K+-induced cellular alkalinization, consistent with the presence of a basolateral, electroneutral Ba2+-sensitive K+-Cl− cotransport that may operate as a K+-HCO[Formula: see text] cotransport. This cotransport was inhibited in the peritubular presence of furosemide, [(dihydroindenyl)oxy]alkanoic acid, 5-nitro-2-(3-phenylpropylamino)benzoate, or DIDS. At least three distinct basolateral HCO[Formula: see text] transport mechanisms are functional under physiological conditions: electroneutral Cl−/HCO[Formula: see text] exchange, DIDS- and EIPA-insensitive Na+-HCO[Formula: see text] cotransport, and Ba2+-sensitive electroneutral K+-Cl−(HCO[Formula: see text]) cotransport.


2004 ◽  
Vol 287 (1) ◽  
pp. F57-F63 ◽  
Author(s):  
Bruns A. Watts ◽  
David W. Good

Absorption of HCO3− in the medullary thick ascending limb (MTAL) is mediated by apical membrane Na+/H+ exchange. The identity and function of other apical acid-base transporters in this segment have not been defined. The present study was designed to examine apical membrane HCO3−/OH−/H+ transport pathways in the rat MTAL and to determine their role in transepithelial HCO3− absorption. MTALs were perfused in vitro in Na+- and Cl−-free solutions containing 25 mM HCO3−, 5% CO2. Lumen addition of either 120 mM Cl− or 50 mM Na+ (50 μM EIPA present) had no effect on intracellular pH (pHi). Lumen Cl− addition also had no effect on pHi in the presence of 145 mM Na+ or in the nominal absence of HCO3−/CO2. Thus there was no evidence for apical Cl−/HCO3− (OH−) exchange, Na+-dependent Cl−/HCO3− exchange, or Na+-HCO3− cotransport. In contrast, in tubules studied in Na+- and Cl−-free solutions containing 25 mM HCO3−, 5% CO2 and 120 mM K+, removal of luminal K+ induced a rapid and pronounced decrease in pHi (ΔpHi = 0.56 ± 0.06 pH U). pHi recovered following lumen K+ readdition. The initial rate of net base efflux induced by lumen K+ removal was decreased 85% at the same pHi in the nominal absence of HCO3−/CO2, indicating a dependence on HCO3−/CO2 and arguing against apical K+/H+ exchange. A combination of the apical K+ channel blockers quinidine (0.1 mM) and glybenclamide (0.25 mM) had no effect on the lumen K+-induced pHi changes, arguing against electrically coupled K+ and HCO3− conductances. The effect of lumen K+ on pHi was inhibited by 1 mM H2DIDS. In addition, lumen addition of DIDS increased transepithelial HCO3− absorption from 10.7 ± 0.7 to 14.9 ± 0.7 pmol·min−1·mm−1 ( P < 0.001) and increased pHi slightly in MTAL studied in physiological solutions (25 mM HCO3− and 4 mM K+). Lumen DIDS stimulated HCO3− absorption in the absence and presence of furosemide. These results are consistent with an apical membrane K+-dependent HCO3− transport pathway that mediates coupled transfer of K+ and HCO3− from cell to lumen in the MTAL. This mechanism, possibly an apical K+-HCO3− cotransporter, functions in parallel with apical Na+/H+ exchange and opposes transepithelial HCO3− absorption.


1986 ◽  
Vol 87 (4) ◽  
pp. 567-590 ◽  
Author(s):  
S C Hebert ◽  
T E Andreoli

Net Cl- absorption in the mouse medullary thick ascending limb of Henle (mTALH) involves a furosemide-sensitive Na+:K+:2 Cl- apical membrane symport mechanism for salt entry into cells, which occurs in parallel with a Ba++-sensitive apical K+ conductance. The present studies, using the in vitro microperfused mouse mTALH, assessed the concentration dependence of blockade of this apical membrane K+-conductive pathway by Ba++ to provide estimates of the magnitudes of the transcellular (Gc) and paracellular (Gs) electrical conductances (millisiemens per square centimeter). These studies also evaluated the effects of luminal hypertonicity produced by urea on the paracellular electrical conductance, the electrical Na+/Cl- permselectivity ratio, and the morphology of in vitro mTALH segments exposed to peritubular antidiuretic hormone (ADH). Increasing luminal Ba++ concentrations, in the absence of luminal K+, produced a progressive reduction in the transcellular conductance that was maximal at 20 mM Ba++. The Ba++-sensitive transcellular conductance in the presence of ADH was 61.8 +/- 1.7 mS/cm2, or approximately 65% of the total transepithelial conductance. In phenomenological terms, the luminal Ba++-dependent blockade of the transcellular conductance exhibited negative cooperativity. The transepithelial osmotic gradient produced by luminal urea produced blebs on apical surfaces, a striking increase in shunt conductance, and a decrease in the shunt Na+/Cl- permselectivity (PNa/PCl), which approached that of free solution. The transepithelial conductance obtained with luminal 800 mM urea, 20 mM Ba++, and 0 K+ was 950 +/- 150 mS/cm2 and provided an estimate of the maximal diffusion resistance of intercellular spaces, exclusive of junctional complexes. The calculated range for junctional dilution voltages owing to interspace salt accumulation during ADH-dependent net NaCl absorption was 0.7-1.1 mV. Since the Ve accompanying ADH-dependent net NaCl absorption is 10 mV, lumen positive, virtually all of the spontaneous transepithelial voltage in the mouse mTALH is due to transcellular transport processes. Finally, we developed a series of expressions in which the ratio of net Cl- absorption to paracellular Na+ absorption could be expressed in terms of a series of electrical variables. Specifically, an analysis of paired measurement of PNa/PCl and Gs was in agreement with an electroneutral Na+:K+:2 Cl- apical entry step. Thus, for net NaCl absorption, approximately 50% of Na+ was absorbed via a paracellular route.


1980 ◽  
Vol 239 (2) ◽  
pp. F121-F126 ◽  
Author(s):  
J. E. Bourdeau ◽  
M. B. Burg

Cortical thick ascending limbs of Henle's loop were dissected from rabbit kidneys and perfused in vitro. Unidirectional transepithelial calcium fluxes from lumen-to-bath and bath-to-lumen were measured with 45Ca. The tubules were bathed in 150 mM sodium and perfused with 60 mM sodium to simulate conditions in the cortical thick ascending limb in vivo. During the 20-30 min preceding the addition of parathyroid hormone (PTH), net calcium absorption decreased from 0.207 to 0.084 pmol x s-1 x cm-1. After addition of synthetic bovine PTH (60-64 nM) to the bath, there was an immediate increase in calcium absorption, and by 20 min the net flux increased to 0.415 pmol x s-1 x cm-1. The increase in calcium absorption was due to an increase in the lumen-to-bath flux. Dibutyryl-cAMP or 8-BrcAMP mimicked PTH; adrenocorticotropic hormone had no effect on the calcium flux. Transepithelial voltage was unchanged after addition of PTH. We conclude that PTH increases calcium absorption across the cortical thick ascending limb, probably by stimulation of adenylate cyclase.


Sign in / Sign up

Export Citation Format

Share Document