Effects of inhibitors of Cl conductance on Cl self-exchange in rabbit cortical collecting tubule

1986 ◽  
Vol 251 (6) ◽  
pp. F1009-F1017
Author(s):  
K. Tago ◽  
D. H. Warden ◽  
V. L. Schuster ◽  
J. B. Stokes

Electroneutral vs. conductive pathways of Cl transport were examined by measuring transepithelial conductance (GT) and the lumen-to-bath 36Cl rate coefficient (KCl). Experimental conditions minimized both Cl-HCO3 exchange [HCO3/CO2-free, N-2-hydroxyethylpiperazine-N'-2-ethane-sulfonic acid (HEPES)-buffered solutions] and the electrical driving force for paracellular Cl diffusion (amiloride in the perfusate, transepithelial voltage near zero). Two agents known to inhibit Cl conductances in other epithelia, anthracene-9-carboxylate (9AC, 1 mM) and diphenylamine carboxylate (DPC, 0.1-0.5 mM) reversibly reduced GT and KCl when added to the bath. Both reduced KCl to values consistent with paracellular diffusion. Bath DPC had no effect on GT in the presence of 4 mM lumen Ba2+, suggesting that the DPC-sensitive conductance is in series with an apical K conductance, i.e., resides on the basolateral membrane. Lumen DPC also reduced GT and KCl, but was less potent than bath DPC. Because the lumen DPC effect on GT was also blocked by lumen Ba2+, lumen DPC probably inhibits a basolateral Cl conductance. K removal and ouabain (0.5 mM) had no effect on KCl, suggesting that Cl tracer movement is not predominantly through the principal cell. We assume that these agents are inhibiting Cl conductive pathways and propose a model in which transcellular Cl movement through the intercalated cell occurs via an apical electroneutral entry step in series with a basolateral conductive pathway.

1984 ◽  
Vol 246 (4) ◽  
pp. F467-F475 ◽  
Author(s):  
J. B. Stokes

These experiments examined the possibility that alterations in cell cation content and/or membrane voltage could influence cell K+ permeability of the cortical collecting tubule. Using the amiloride-treated isolated perfused rabbit cortical collecting tubule, ouabain or a K+-free bath reduced the magnitude of the K+ diffusion voltage. In addition, both methods of Na+-K+-ATPase inhibition reduced the K+ efflux (lumen-to-bath) rate coefficient (KK) without affecting the Na+ efflux rate coefficient. The magnitude of the reduction of KK could not be explained by a model of simple diffusion across two membranes in series even if the intracellular voltage were abolished. Thus, pump inhibition reduced cell K+ permeability. To determine whether membrane depolarization could induce a change in membrane permeability, [K+] was increased to 20 mM in both perfusate and bath. The reduction in KK was within the range predicted by the three-compartment model (36%). Differential membrane depolarization by raising lumen [K+] or bath [K+] produced disparate results. Apical depolarization reduced KK but basolateral depolarization did not. Taken together these results indicate that intracellular ion content may play a major role in regulating cell K+ permeability independent of voltage-dependent effects. In addition, under these experimental conditions, the apical membrane may be the rate-limiting barrier to cellular transfer.


1992 ◽  
Vol 99 (2) ◽  
pp. 241-262 ◽  
Author(s):  
G A Altenberg ◽  
J S Stoddard ◽  
L Reuss

In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.


1985 ◽  
Vol 248 (2) ◽  
pp. F282-F295 ◽  
Author(s):  
K. W. Beyenbach ◽  
E. Fromter

The electrophysiology of shark proximal tubules (Squalus acanthias) was investigated using conventional microelectrodes and cable analysis. Under in vitro perfusion with symmetrical Ringer solutions, tubule transepithelial resistance was 36.3 +/- 2.3 omega X cm2 (means +/- SE, n = 44). Other electrophysiological variables varied widely under control conditions. In unstimulated tubules (n = 16) the transepithelial voltage (VT,o) was lumen positive (1.2 +/- 0.2 mV), the basolateral membrane potential (Vbl,x) was -61.3 +/- 1.6 mV, and the fractional resistance of the apical membrane (fRa) was 0.67 +/- 0.02. Spontaneously stimulated tubules (n = 28) had lumen-negative VT,o values (-1.5 +/- 0.4 mV), low Vbl,x values (-41.3 +/- 1.7 mV), and low fRa values (0.30 +/- 0.02). The stimulated state can be induced in unstimulated tubules via treatment with cAMP. Multiple microelectrode impalements in a single tubule revealed epithelial cells sharing similar electrophysiological properties. Selective ion substitutions in the tubule lumen and peritubular bath uncovered an increased Cl conductance in the apical membrane of spontaneously and cAMP-stimulated tubules. Anthracene-9-carboxylic acid tended to reverse the stimulated state, and furosemide hyperpolarized Vbl,x. These results constitute the first evidence for secretory Cl transport in a renal proximal tubule. The electrophysiological responses to ion substitutions, stimulators, and inhibitors are strikingly similar to those of known Cl-transporting epithelia.


1986 ◽  
Vol 251 (1) ◽  
pp. F40-F48
Author(s):  
K. Tago ◽  
V. L. Schuster ◽  
J. B. Stokes

The hormonal control of Cl transport was examined in rabbit cortical collecting tubules using the lumen-to-bath 36Cl tracer rate coefficient (KCl, nm/s). Tracer movement via Cl-HCO3 exchange was minimized by using HCO3-CO2-free solutions. The electrical driving force was minimized by treating with amiloride. Under these conditions, net Cl transport was zero, yet there was a large KCl that fell 88% on removing bath (trans) Cl. These results are consistent with the mechanism of tracer flux being predominantly Cl self exchange. KCl fell spontaneously with time in vitro; after this decline KCl could be stimulated with 8-bromo-cAMP. cAMP present from the onset of perfusion prevented the time-dependent fall in KCl. When tracer movement was restricted to diffusion by eliminating Cl self exchange (0 Cl bath), cAMP had no effect on KCl. Although both isoproterenol and vasopressin are known to stimulate adenylate cyclase in this epithelium, only isoproterenol mimicked the cAMP effect on KCl. The isoproterenol effect was blocked by either propranolol or prostaglandin E2. Lumen addition of the disulfonic stilbene DIDS had no effect on KCl. Lumen addition of furosemide or trichloromethiazide had minimal or no effect. Taken together, these results indicate that Cl self exchange is regulated by beta-adrenergic agents acting via cAMP. The lack of an effect of vasopressin suggests cellular heterogeneity in this response to cAMP.


1984 ◽  
Vol 246 (4) ◽  
pp. F457-F466 ◽  
Author(s):  
J. B. Stokes

These experiments were designed to examine passive K+ transport by the rabbit cortical collecting tubule. Potassium diffusion voltages were used to assess the presence of apical and basolateral K+ conductances. With amiloride (0.1 mM) in the lumen, reproducible K+ diffusion voltages from both the lumen and bath were obtained. Amiloride enhanced the magnitude of these voltage deflections (delta VT). There were time-dependent increases in the K+ diffusion voltage but the steady-state values were highly reproducible in the same tubule. In the amiloride-treated tubules, delta VT induced by raising bath [K+] to 20 mM was larger than that produced by the same increase in lumen [K+]. To evaluate whether the amiloride-treated tubule had, as suggested by the K+ diffusion voltages, substantial K+ permeabilities on both apical and basolateral membranes, the K+ rate coefficient (lumen-to-bath, KK) was measured before and after amiloride treatment. The amiloride-induced increase in KK, from 66 +/- 6 to 205 +/- 35 nm/s, was significantly larger than could be accounted for by the changes in transepithelial voltage or membrane voltages alone. This discrepancy could be due to single-file diffusion across the apical membrane and/or the (secondary) enhancement of K+ permeability following inhibition of Na+ transport.


2020 ◽  
Author(s):  
J Konzok ◽  
L Kreuzpointner ◽  
GI Henze ◽  
L Wagels ◽  
C Kärgel ◽  
...  

© 2020 Elsevier Inc. The Taylor Aggression Paradigm (TAP) is widely used to measure reactive aggression in laboratory settings. While modified versions (mTAPs) with various stimulus characteristics (shocks, noise, pressure, heat) have already been established, a modified version with monetary stimuli has only been introduced very recently. In this experiment, 209 young healthy participants (104 males, 105 females) completed a mock Competitive Reaction Time Task (CRTT) with a fictional opponent with preprogrammed 40 win and 60 lose trials. In lose trials, participants were provoked by subtracting a low (0–20 euro cents), medium (30–60 cents) or high (70–90 cents) amount of money from their fictitious account. Provocation stimuli were either presented randomly or in a fixed sequence (experimental conditions). In contrast to a random sequence, the fixed sequence was generated by repeating trials from the same provocation category in series of three. Linear mixed models (LMMs) considering aggression trajectories revealed significant effects of provocation (low, medium, high) and trait aggression (K-FAF) on reactive aggression. Men showed significantly higher reactive aggression levels than women. In regard to provocation sequence, we found no significant difference in reactive aggression between the random vs. fixed stimulus sequences. The findings provide new evidence supporting the view that the monetary mTAP is able to induce as well as capture reactive aggression in the laboratory. Additionally, we found no advantage of a fixed sequence as the level of reactive aggression in a given trial appeared to be mainly predicted by the preceding provocation trial.


1991 ◽  
Vol 261 (3) ◽  
pp. C521-C529 ◽  
Author(s):  
J. L. Hegarty ◽  
B. Zhang ◽  
T. L. Pannabecker ◽  
D. H. Petzel ◽  
M. D. Baustian ◽  
...  

The effects of dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) and bumetanide (both 10(-4) M) on transepithelial Na+, K+, Cl-, and fluid secretion and on tubule electrophysiology were studied in isolated Malpighian tubules of the yellow fever mosquito Aedes aegypti. Peritubular DBcAMP significantly increased Na+, Cl-, and fluid secretion but decreased K+ secretion. In DBcAMP-stimulated tubules, bumetanide caused Na+, Cl-, and fluid secretion to return to pre-cAMP control rates and K+ secretion to decrease further. Peritubular bumetanide significantly increased Na+ secretion and decreased K+ secretion so that Cl- and fluid secretion did not change. In bumetanide-treated tubules, the secretagogue effects of DBcAMP are blocked. In isolated Malpighian tubules perfused with symmetrical Ringer solution, DBcAMP significantly hyperpolarized the transepithelial voltage (VT) and depolarized the basolateral membrane voltage (Vbl) with no effect on apical membrane voltage (Va). Total transepithelial resistance (RT) and the fractional resistance of the basolateral membrane (fRbl) significantly decreased. Bumetanide also hyperpolarized VT and depolarized Vbl, however without significantly affecting RT and fRbl. Together these results suggest that, in addition to stimulating electroconductive transport, DBcAMP also activates a nonconductive bumetanide-sensitive transport system in Aedes Malpighian tubules.


1996 ◽  
Vol 316 (3) ◽  
pp. 999-1004 ◽  
Author(s):  
Lorella PASCOLO ◽  
Savino DEL VECCHIO ◽  
Ronald K. KOEHLER ◽  
J. Enrique BAYON ◽  
Cecile C. WEBSTER ◽  
...  

Using highly purified unconjugated [3H]bilirubin (UCB), we measured UCB binding to delipidated human serum albumin (HSA) and its uptake by basolateral rat liver plasma membrane vesicles, in both the absence and presence of an inside-positive membrane potential. Free UCB concentrations ([Bf]) were calculated from UCB–HSA affinity constants (K´f), determined by five cycles of ultrafiltration through a Centricon-10 device (Amicon) of the same solutions used in the uptake studies. At HSA concentrations from 12 to 380 μM, K´f (litre/mol) was inversely related to [HSA], irrespective of the [Bt]/[HSA] ratio. K´f was 2.066×106+(3.258×108/[HSA]). When 50 mM KCl was iso-osmotically substituted for sucrose, the K´f value was significantly lower {2.077×106+(1.099×108/[HSA])}. The transport occurred into an osmotic-sensitive space. Below saturation ([Bf] ⩽ 65 nM), both electroneutral and electrogenic components followed saturation kinetics with respect to [Bf], with Km values of 28±7 and 57±8 nM respectively (mean±S.D., n = 3, P < 0.001). The Vmax was greater for the electrogenic than for the electroneutral component (112±12 versus 45±4 pmol of UCB·mg-1 of protein·15 s-1, P < 0.001). Sulphobromophthalein trans-stimulated both electrogenic (61%) and electroneutral (72%) UCB uptake. These data indicate that: (a) as [HSA] increases, K´f decreases, thus increasing the concentration of free UCB. This may account for much of the enhanced hepatocytic uptake of organic anions observed with increasing [HSA]. (b) UCB is taken up at the basolateral membrane of the hepatocyte by two systems with Km values within the range of physiological free UCB levels in plasma. The electrogenic component shows a lower affinity and a higher capacity than the electroneutral component. (c) It is important to calculate the actual [Bf] using a K´f value determined under the same experimental conditions (medium and [HSA]) used for the uptake studies.


1995 ◽  
Vol 268 (2) ◽  
pp. C425-C433 ◽  
Author(s):  
M. J. Stutts ◽  
E. R. Lazarowski ◽  
A. M. Paradiso ◽  
R. C. Boucher

Luminal extracellular ATP evoked a bumetanide-sensitive short-circuit current in cultured T84 cell epithelia (90.2 +/- 18.2 microA/cm2 at 100 microM ATP, apparent 50% effective concentration, 11.5 microM). ATP appeared to increase the Cl- conductance of the apical membrane but not the driving force for Cl- secretion determined by basolateral membrane K+ conductance. Specifically, the magnitude of Cl- secretion stimulated by ATP was independent of basal current, and forskolin pretreatment abolished subsequent stimulation of Cl- secretion by ATP. Whereas ATP stimulated modest production of adenosine 3',5'-cyclic monophosphate (cAMP) by T84 cells, ATP caused smaller increases in intracellular Ca2+ and inositol phosphate activities than the Ca(2+)-signaling Cl- secretagogue carbachol. An inhibitor of 5'-nucleotidase, alpha,beta-methyleneadenosine 5'-diphosphate, blocked most of the response to luminal ATP. The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline blocked both the luminal ATP-dependent generation of cAMP and Cl- secretion when administered to the luminal but not submucosal bath. These results demonstrate that the Cl- secretion stimulated by luminal ATP is mediated by a A2-adenosine receptor located on the apical cell membrane. Thus metabolism of extracellular ATP to adenosine regulates the activity of cystic fibrosis transmembrane conductor regulator (CFTR) in the apical membrane of polarized T84 cells.


2001 ◽  
Vol 280 (3) ◽  
pp. F396-F405 ◽  
Author(s):  
Maria Ohlson ◽  
Jenny Sörensson ◽  
Börje Haraldsson

We have analyzed glomerular sieving data from humans, rats in vivo, and from isolated perfused rat kidneys (IPK) and present a unifying hypothesis that seems to resolve most of the conflicting results that exist in the literature. Particularly important are the data obtained in the cooled IPK, because they allow a variety of experimental conditions for careful analysis of the glomerular barrier; conditions that never can be obtained in vivo. The data strongly support the classic concept of a negative charge barrier, but separate components seem to be responsible for charge and size selectivity. The new model is composed of a dynamic gel and a more static membrane layer. First, the charged gel structure close to the blood compartment has a charge density of 35–45 meq/l, reducing the concentration of albumin to 5–10% of that in plasma, due to ion-ion interactions. Second, the size-selective structure has numerous functional small pores (radius 45–50 Å) and far less frequent large pores (radius 75–115 Å), the latter accounting for 1% of the total hydraulic conductance. Both structures are required for the maintenance of an intact glomerular barrier.


Sign in / Sign up

Export Citation Format

Share Document