Characterization of apical and basolateral membrane conductances of rat inner medullary collecting duct

1989 ◽  
Vol 256 (5) ◽  
pp. F862-F868 ◽  
Author(s):  
B. A. Stanton

Initial segments of the inner medullary collecting duct of the rat were perfused in vitro, and the electrophysiological properties of the apical and basolateral membranes were examined with KCl-filled microelectrodes. The fractional resistance of the apical membrane (FRa = Ra/Ra + Rbl) and the transepithelial resistance (RT) were estimated by cable analysis. In control tubules the transepithelial voltage (VT) averaged -2.2 mV, and the voltage across the basolateral membrane (Vbl) averaged -51.1 mV. RT was 11.9 k omega.cm (72.8 omega.cm2), and FRa was 0.94. Pretreatment of the rats with deoxycorticosterone (DOC)-pivalate for 7-10 days did not alter these electrophysiological properties. In control tubules, amiloride in the lumen (10(-5) M) changed VT from -3.0 to +1.4 mV and increased Vbl from -49.4 to -53.8 mV, RT from 12.5 to 13.6 k omega.cm, and FRa from 0.92 to 0.98. Thus the apical membrane is conductive to Na+. An increase of the bath K+ concentration from 4 to 15 mM caused an 18.8 mV depolarization of Vbl: barium in the bath also depolarized Vbl. A fivefold decrease in the [HCO3-] in the bath depolarized Vbl by 13.1 mV. 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) blocked this depolarization. Thus the basolateral membrane is conductive to K+ and HCO3-. Experiments with ouabain revealed a Na+-K+-ATPase in the basolateral membrane. Taken together, the results support a model in which electrogenic Na+ absorption is driven by the Na+-K+-ATPase in the basolateral membrane, with passive movement of Na+ occurring through an amiloride-sensitive conductive pathway in the apical membrane.

1995 ◽  
Vol 268 (1) ◽  
pp. F53-F63 ◽  
Author(s):  
B. Flamion ◽  
K. R. Spring ◽  
M. Abramow

Prolonged fluid restriction in rats is accompanied by functional modifications of the terminal part of the inner medullary collecting duct (IMCD) revealed by a sustained increase in arginine vasopressin (AVP)-independent transepithelial osmotic water permeability (PTE) in vitro. The cellular basis of this adaptation was explored in isolated and perfused terminal IMCDs of Sprague-Dawley rats using video and fluorescence microscopy. Basolateral membrane osmotic water permeability (Posm), transcellular Posm, and PTE were measured in quick sequence in every tubule. They were expressed per unit area of basolateral membrane corrected for infoldings, based on previous stereological studies and assuming no major change in membrane surface area between hydrated and dehydrated animals. Compared with IMCDs of rats with a high water intake, IMCDs of rats deprived of fluid for 36 h displayed a significantly higher basal PTE (24.9 +/- 5.1 vs. 6.1 +/- 0.6 microns/s), a similar basolateral Posm, and a higher transcellular Posm, implying a higher permeability of the apical membrane, despite the absence of exogenous AVP. However, when IMCDs of thirsted rats were exposed to AVP in vitro, their transcellular Posm (36.0 +/- 2.4 microns/s) was significantly smaller than their PTE determined simultaneously (51.8 +/- 7.1 microns/s), suggesting that part of the water flow may follow a paracellular route. A change in paracellular pathways was supported by higher apparent permeabilities to [14C]sucrose (0.85 +/- 0.27 vs. 0.28 +/- 0.04 x 10(-5) cm/s) and to [methoxy-3H]inulin (0.25 +/- 0.04 vs. 0.14 +/- 0.03 x 10(-5) cm/s) in IMCDs of thirsted rats. The nonelectrolyte permeabilities were affected neither by AVP nor by urea-rich bathing solutions. We conclude that in vivo factors related to dehydration produce a conditioning effect on terminal IMCD, which includes stabilization of the apical membrane in a state of high Posm and opening up of paracellular pathways revealed by a higher permeability to water and nonelectrolytes. The role of these adaptive phenomena remains unclear but may pertain to the sudden transitions between antidiuresis and diuresis.


1990 ◽  
Vol 259 (6) ◽  
pp. F986-F999 ◽  
Author(s):  
B. Flamion ◽  
K. R. Spring

To quantify the pathways for water permeation through the kidney medulla, knowledge of the water permeability (Posmol) of individual cell membranes in inner medullary collecting duct (IMCD) is required. Therefore IMCD segments from the inner two thirds of inner medulla of Sprague-Dawley rats were perfused in vitro using a setup devised for rapid bath and luminal fluid exchanges (half time, t1/2, of 55 and 41 ms). Differential interference contrast microscopy, coupled to video recording, was used to measure volume and approximate surface areas of single cells. Volume and volume-to-surface area ratio of IMCD cells were strongly correlated with their position along the inner medullary axis. Transmembrane water flow (Jv) was measured in response to a variety of osmotic gradients (delta II) presented on either basolateral or luminal side of the cells. The linear relation between Jv and delta II yielded the cell membrane Posmol, which was then corrected for membrane infoldings. Basolateral membrane Posmol was 126 +/- 3 microns/s. Apical membrane Posmol rose from a basal value of 26 +/- 3 microns/s to 99 +/- 5 microns/s in presence of antidiuretic hormone (ADH). Because of amplification of basolateral membrane, the ADH-stimulated apical membrane remained rate-limiting for transcellular osmotic water flow, and the IMCD cell did not swell significantly. Calculated transcellular Posmol, expressed in terms of smooth luminal surface, was 64 microns/s without ADH and 207 microns/s with ADH. IMCD cells in anisosmotic media displayed almost complete volume regulatory decrease but only partial volume regulatory increase.


1998 ◽  
Vol 9 (5) ◽  
pp. 746-754
Author(s):  
G Obrador ◽  
H Yuan ◽  
T M Shih ◽  
Y H Wang ◽  
M A Shia ◽  
...  

Although the inner medullary collecting duct (IMCD) plays a major role in urinary acidification, the molecular identification of many of the specific components of the transport system in this nephron segment are lacking. A cultured line of rat IMCD cells was used to characterize the mediators of cellular HCO3 exit. This cell line functionally resembles alpha-intercalated cells. Physiologic experiments document that HCO3- transport is a reversible, electroneutral, Cl dependent, Na+-independent process. It can be driven by Cl-gradients and inhibited by stilbenes such as 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid. Immunohistochemical analysis, using a rabbit polyclonal antibody against the carboxy-terminal 12 amino acids of anion exchanger 1 (AE1), revealed a distribution of immunoreactive protein that is consistent with a basolateral localization of AE in cultured cells and in alpha-intercalated cells identified in sections of rat kidney cortex. Immunoblot revealed two immunoreactive bands (approximately 100 and 180 kD in size) in membranes from cultured IMCD cells, rat renal medulla, and freshly isolated IMCD cells. The mobility of the lower molecular weight band was similar to that of AE1 in red blood cell ghosts and kidney homogenate and therefore probably represents AE1. The mobility of the 180-kD band is similar to that for rat stomach and kidney AE2 and therefore probably represents AE2. Selective biotinylation of the apical or basolateral membrane proteins in cultured IMCD cells revealed that both AE1 and AE2 are polarized to the basolateral membrane. Northern blot analysis documented the expression of mRNA for AE1 and AE2 but not AE3. Furthermore, the cDNA sequence of AE1 and AE2 expressed by these cells was found to be virtually identical to that reported for kidney AE1 and rat stomach AE2. It is concluded that this cultured line of rat IMCD cells expresses two members of the anion exchanger gene family, AE1 and AE2, and both of these exchangers probably mediate the electroneutral Cl--dependent HCO3-transport observed in this cell line.


1996 ◽  
Vol 270 (1) ◽  
pp. F131-F140 ◽  
Author(s):  
C. Zhang ◽  
R. F. Husted ◽  
J. B. Stokes

The rat inner medullary collecting duct is capable of secreting anions. We previously showed that adenosine 3',5'-cyclic monophosphate (cAMP) stimulates anion secretion; the apical membrane anion exit pathway activated by cAMP appears to be the cystic fibrosis transmembrane conductance regulator Cl- channel. The present experiments were designed to test the hypothesis that the entry pathway across the basolateral membrane is a Cl-/HCO3- exchanger operating in parallel with an Na+/H+ exchanger. We investigated the mechanism by measuring cell Cl-, cell pH, and short-circuit current under a variety of conditions designed to uncover these pathways. cAMP agonists caused little change in cell Cl-, but they produced a consistent intracellular acidification. This acidification was dependent on HCO3-, but not on Cl-, and was not inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The presence of the basolateral Cl-/HCO3- exchanger was demonstrated by several maneuvers, and its activity was inhibited by DIDS. Applied to the basolateral solution, DIDS did not inhibit the cAMP-dependent anion current but actually stimulated it. We conclude that cAMP-stimulated anion secretion does not require activation of the basolateral Cl-/HCO3- exchanger. The transporter responsible for Cl- entry across the basolateral membrane remains unknown and is not inhibited by a variety of anion transport inhibitors, including DIDS, bumetanide, and hydrochlorothiazide. The cell acidification induced by cAMP appears to be independent of acid secretion and is the result of activation of one or more HCO3- exit pathways that are resistant to DIDS but are inhibited by a nonspecific anion transport inhibitor, 5-nitro-2-(3-phenylpro-pylamino) benzoic acid. We present a revised model for anion transport by the rat inner medullary collecting duct.


1994 ◽  
Vol 266 (3) ◽  
pp. F466-F476 ◽  
Author(s):  
A. E. Weill ◽  
C. C. Tisher ◽  
M. F. Conde ◽  
I. D. Weiner

The inner medullary collecting duct (IMCD) is the final portion of the mammalian renal tubule that is able to significantly regulate systemic acid-base balance. Although the H+ transporters of this segment are relatively well studied, little is known regarding the mechanisms of HCO3- transport. The mechanisms of HCO3- transport in primary cultures of rabbit IMCD were studied using the pH-sensitive dye, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, in CO2/HCO3(-)-containing solutions at 37 degrees C. Removal of Cl- from the extracellular solution caused reversible intracellular alkalinization, demonstrating the presence of Cl-/HCO3- exchange. Alkalinization with Cl- removal was independent of changes in membrane potential, did not require the presence of extracellular Na+, and was inhibited by the disulfonic stilbene, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS, 10(-4) M). Half-maximal intracellular pH (pHi) recovery with readdition of Cl- to the extracellular solution occurred at a Cl- concentration of 37.4 +/- 5.7 mM. When rabbit IMCD were cultured on permeable support membranes, Cl-/HCO3- exchange activity was found only on the basolateral membrane. However, there was no evidence of band 3 protein immunoreactivity. In contrast, no evidence for Na(+)-(HCO3-)n > 1 cotransport activity was found. Depolarization of IMCD cells by acute increases in extracellular K+ did not alter pHi, nor was Na(+)-dependent, 5-(N-ethyl-N-isopropyl)amiloride-insensitive pHi recovery from an acid load inhibited by DIDS (10(-4) M). Finally, recovery from intracellular alkalosis induced by incubation in 0 mM Cl-, 50 mM HCO3- extracellular solution required Cl- and was independent of Na+. These studies indicate that the major mechanism of HCO3- transport in primary cultures of the rabbit IMCD is via a band 3 protein-negative, Na(+)-independent, basolateral, Cl-/HCO3- exchanger.


1989 ◽  
Vol 256 (1) ◽  
pp. F79-F84 ◽  
Author(s):  
B. M. Koeppen

Segments of the outer medullary collecting duct were isolated from the inner stripe of the rabbit kidney (OMCDi), perfused in vitro, and impaled across their basolateral membranes with voltage-recording microelectrodes. The disulfonic stilbene 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) (10(-4) M) and the carbonic anhydrase inhibitor acetazolamide (10(-4) M) depolarized the lumen-positive transepithelial voltage (VT) toward 0 mV when added to the bath solution. Concurrently, the basolateral membrane voltage (Vbl) hyperpolarized. The hyperpolarization of Vbl, which averaged 19.3 +/- 2.9 mV (n = 11) for SITS and 22.7 +/- 3.5 mV (n = 11) for acetazolamide, was not due to an alteration in the ionic selectivity of the basolateral membrane, which was highly Cl- selective. The hyperpolarization of Vbl could best be explained by a decrease in the intracellular [Cl-], and the associated shift in the emf for Cl- (ECl) across the basolateral membrane. The decrease in intracellular [Cl-] could be attributed to inhibition of a Cl-HCO3 antiporter in the basolateral membrane. SITS appeared to inhibit this antiporter directly, whereas the effect of acetazolamide was indirect, probably secondary to a decrease in the intracellular [HCO3-]. Finally, both SITS and acetazolamide induced or unmasked an electroneutral K+-coupled transport system in the basolateral membrane.


1991 ◽  
Vol 98 (4) ◽  
pp. 791-813 ◽  
Author(s):  
S R Hays ◽  
R J Alpern

Apical membrane H+ extrusion in the renal outer medullary collecting duct, inner stripe, is mediated by a Na(+)-independent H+ pump. To examine the regulation of this transporter, cell pH and cell Ca2+ were measured microfluorometrically in in vitro perfused tubules using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and fura-2, respectively. Apical membrane H+ pump activity, assayed as cell pH recovery from a series of acid loads (NH3/NH+4 prepulse) in the total absence of ambient Na+, initially occurred at a slow rate (0.06 +/- 0.02 pH units/min), which was not sufficient to account for physiologic rates of H+ extrusion. Over 15-20 min after the initial acid load, the rate of Na(+)-independent cell pH recovery increased to 0.63 +/- 0.09 pH units/min, associated with a steady-state cell pH greater than the initial pre-acid load cell pH. This pattern suggested an initial suppression followed by a delayed activation of the apical membrane H+ pump. Replacement of peritubular Na+ with choline or N-methyl-D-glucosamine resulted in an initial spike increase in cell Ca2+ followed by a sustained increase in cell Ca2+. The initial rate of Na(+)-independent cell pH recovery could be increased by elimination of the Na+ removal-induced sustained cell Ca2+ elevation by: (a) performing studies in the presence of 135 mM peritubular Na+ (1 mM peritubular amiloride used to inhibit basolateral membrane Na+/H+ antiport); (b) clamping cell Ca2+ low with dimethyl-BAPTA, an intracellular Ca2+ chelating agent; or (c) removal of extracellular Ca2+. Cell acidification induced a spike increase in cell Ca2+. The late acceleration of Na(+)-independent cell pH recovery was independent of Na+ removal and of the method used to acidify the cell, but was eliminated by prevention of the cell Ca2+ spike and markedly delayed by the microfilament-disrupting agent, cytochalasin B. This study demonstrates that peritubular Na+ removal results in a sustained elevation in cell Ca2+, which inhibits the apical membrane H+ pump. In addition, rapid cell acidification associated with a spike increase in cell Ca2+ leads to a delayed activation of the H+ pump. Thus, cell Ca2+ per se, or a Ca(2+)-activated pathway, can modulate H+ pump activity.


2002 ◽  
Vol 282 (1) ◽  
pp. F91-F102 ◽  
Author(s):  
Susan M. Wall ◽  
Michael P. Fischer ◽  
Gheun-Ho Kim ◽  
Bich-May Nguyen ◽  
Kathryn A. Hassell

In rat terminal inner medullary collecting duct (tIMCD), the Na,K-ATPase mediates NH[Formula: see text] uptake, which increases secretion of net H+ equivalents. K+ and NH[Formula: see text]compete for a common binding site on the Na,K-ATPase. Therefore, NH[Formula: see text] uptake should increase during hypokalemia because interstitial K+ concentration is reduced. We asked whether upregulation of the Na,K-ATPase during hypokalemia also increases basolateral NH[Formula: see text] uptake. To induce hypokalemia, rats ate a diet with a low K+ content. In tIMCD tubules from rats given 3 days of dietary K+restriction, Na,K-ATPase β1-subunit (NK-β1) protein expression increased although NK-α1 protein expression and Na,K-ATPase activity were unchanged relative to K+-replete controls. However, after 7 days of K+ restriction, both NK-α1 and NK-β1 subunit protein expression and Na,K-ATPase activity increased. The magnitude of Na,K-ATPase-mediated NH[Formula: see text]uptake across the basolateral membrane ( J [Formula: see text]) was determined in tIMCD tubules perfused in vitro from rats after 3 days of a normal or a K+-restricted diet. J [Formula: see text] was the same in tubules from rats on either diet when measured at the same extracellular K+ concentration. However, in either treatment group, increasing K+ concentration from 10 to 30 mM reduced J [Formula: see text] >60%. In conclusion, with 3 days of K+ restriction, NH[Formula: see text] uptake by Na,K-ATPase is increased in the tIMCD primarily from the reduced interstitial K+ concentration.


1999 ◽  
Vol 276 (3) ◽  
pp. C758-C763 ◽  
Author(s):  
Edward A. Alexander ◽  
Dennis Brown ◽  
Theodora Shih ◽  
Mary McKee ◽  
John H. Schwartz

In previous studies, our laboratory has utilized a cell line derived from the rat inner medullary collecting duct (IMCD) as a model system for mammalian renal epithelial cell acid secretion. We have provided evidence, from a physiological perspective, that acute cellular acidification stimulates apical exocytosis and elicits a rapid increase in proton secretion that is mediated by an H+-ATPase. The purpose of these experiments was to examine the effect of acute cellular acidification on the distribution of the vacuolar H+-ATPase in IMCD cells in vitro. We utilized the 31-kDa subunit of the H+-ATPase as a marker of the complete enzyme. The distribution of this subunit of the H+-ATPase was evaluated by immunohistochemical techniques (confocal and electron microscopy), and we found that there is a redistribution of these pumps from vesicles to the apical membrane. Immunoblot evaluation of isolated apical membrane revealed a 237 ± 34% ( P < 0.05, n = 9) increase in the 31-kDa subunit present in the membrane fraction 20 min after the induction of cellular acidification. Thus our results demonstrate the presence of this pump subunit in the IMCD cell line in vitro and that cell acidification regulates the shuttling of cytosolic vesicles containing the 31-kDa subunit into the apical membrane.


1985 ◽  
Vol 248 (2) ◽  
pp. F282-F295 ◽  
Author(s):  
K. W. Beyenbach ◽  
E. Fromter

The electrophysiology of shark proximal tubules (Squalus acanthias) was investigated using conventional microelectrodes and cable analysis. Under in vitro perfusion with symmetrical Ringer solutions, tubule transepithelial resistance was 36.3 +/- 2.3 omega X cm2 (means +/- SE, n = 44). Other electrophysiological variables varied widely under control conditions. In unstimulated tubules (n = 16) the transepithelial voltage (VT,o) was lumen positive (1.2 +/- 0.2 mV), the basolateral membrane potential (Vbl,x) was -61.3 +/- 1.6 mV, and the fractional resistance of the apical membrane (fRa) was 0.67 +/- 0.02. Spontaneously stimulated tubules (n = 28) had lumen-negative VT,o values (-1.5 +/- 0.4 mV), low Vbl,x values (-41.3 +/- 1.7 mV), and low fRa values (0.30 +/- 0.02). The stimulated state can be induced in unstimulated tubules via treatment with cAMP. Multiple microelectrode impalements in a single tubule revealed epithelial cells sharing similar electrophysiological properties. Selective ion substitutions in the tubule lumen and peritubular bath uncovered an increased Cl conductance in the apical membrane of spontaneously and cAMP-stimulated tubules. Anthracene-9-carboxylic acid tended to reverse the stimulated state, and furosemide hyperpolarized Vbl,x. These results constitute the first evidence for secretory Cl transport in a renal proximal tubule. The electrophysiological responses to ion substitutions, stimulators, and inhibitors are strikingly similar to those of known Cl-transporting epithelia.


Sign in / Sign up

Export Citation Format

Share Document