Endothelium-derived relaxing factor regulates renin release in vivo

1992 ◽  
Vol 263 (2) ◽  
pp. F256-F261 ◽  
Author(s):  
D. H. Sigmon ◽  
O. A. Carretero ◽  
W. H. Beierwaltes

Endothelium-derived relaxing factor (EDRF), through its inhibitory second messenger guanosine 3',5'-cyclic monophosphate (cGMP), inhibits renin release in vitro. To determine whether EDRF affects renin in vivo, we tested whether EDRF synthesis inhibition could stimulate renin secretion in intact rats. Because EDRF synthesis inhibition increases blood pressure and consequently withdraws sympathetic activity (both renin inhibitory signals), we also studied the effect of L-N omega-nitroarginine methyl ester (L-NAME) when renal perfusion pressure was controlled and during beta-adrenergic blockade. Mean blood pressure (BP), heart rate (HR), and plasma renin activity (PRA) were measured in anesthetized rats before and after EDRF synthesis inhibition by a 10 mg/kg body wt bolus of L-NAME. L-NAME decreased PRA by 67% [from 11.0 +/- 2.7 to 3.7 +/- 0.8 ng angiotensin I (ANG I).ml-1.h-1, n = 12; P less than 0.001], increased BP by 20 +/- 2 mmHg (P less than 0.001), and decreased HR from 332 +/- 8 to 312 +/- 9 beats/min (P less than 0.005). We repeated our experiment in rats instrumented with an intra-aortic balloon catheter to control renal perfusion pressure and pretreated with propranolol to eliminate the beta-adrenergic effect. Under these conditions, L-NAME now increased PRA by 55% (from 6.9 +/- 1.9 to 10.8 +/- 2.6 ng ANG I.ml-1.h-1, n = 12; P less than 0.02), whereas renal perfusion pressure was unchanged (91 +/- 4 vs. 90 +/- 4 mmHg). HR increased slightly from 308 +/- 5 to 315 +/- 3 beats/min (P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)

1995 ◽  
Vol 269 (1) ◽  
pp. F134-F139 ◽  
Author(s):  
W. H. Beierwaltes

The macula densa is a regulatory site for renin. It contains exclusively the neuronal isoform of nitric oxide synthase (NOS), suggesting NO could stimulate renin secretion through the macula densa pathway. To test whether neuronal NOS mediates renin secretion, renin was stimulated by either the renal baroreceptor or the diuretic furosemide (acting through the macula densa pathway). Renin secretion rate (RSR) was measured in 12 Inactin-anesthetized rats at normal (104 +/- 3 mmHg) and reduced renal perfusion pressure (65 +/- 1 mmHg), before and after selective blockade of the neuronal NOS with 7-nitroindazole (7-NI, 50 mg/kg ip). 7-NI had no effect on basal blood pressure (102 +/- 2 mmHg) or renal blood flow (RBF). Decreasing renal perfusion pressure doubled RSR from 11.8 +/- 3.3 to 22.9 +/- 5.7 ng ANG I.h-1.min-1 (P < 0.01) (ANG I is angiotensin I). Similarly, in 7-NI-treated rats, reduced perfusion doubled RSR from 8.5 +/- 1.8 to 20.5 +/- 6.2 ng ANG I.h-1.min-1 (P < 0.01). Renal hemodynamics and RSR were measured in response to 5 mg/kg iv furosemide in 12 control rats and 11 rats treated with 7-NI. Blocking neuronal NOS did not alter blood pressure (102 +/- 2 mmHg), RBF (5.8 +/- 0.4 ml.min-1.g kidney wt-1), or renal vascular resistance (18.7 +/- 1.4 mmHg.ml-1.min.g kidney wt).(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 247 (3) ◽  
pp. R546-R551 ◽  
Author(s):  
D. Villarreal ◽  
J. O. Davis ◽  
R. H. Freeman ◽  
W. D. Sweet ◽  
J. R. Dietz

This study examines the role of the renal prostaglandin system in stimulus-secretion coupling for renal baroreceptor-dependent renin release in the anesthetized rat. Changes in plasma renin activity (PRA) secondary to suprarenal aortic constriction were evaluated in groups of rats with a single denervated nonfiltering kidney (DNFK) with and without pretreatment with meclofenamate. Suprarenal aortic constriction was adjusted to reduce renal perfusion pressure to either 100 or 50 mmHg. In addition, similar experiments were performed in rats with a single intact filtering kidney. Inhibition of prostaglandin synthesis with meclofenamate failed to block or attenuate the increase in PRA in response to the decrement in renal perfusion pressure after both severe and mild aortic constriction for both the DNFK and the intact-kidney groups. The adequacy of prostaglandin inhibition was demonstrated by complete blockade with meclofenamate of the marked hypotensive and hyperreninemic responses to sodium arachidonate. The results in the DNFK indicate that in the rat, renal prostaglandins do not function as obligatory mediators of the isolated renal baroreceptor mechanism for the control of renin release. Also the findings in the intact filtering kidney suggest that prostaglandins are not essential in the renin response of other intrarenal receptor mechanisms that also are stimulated by a reduction in renal perfusion pressure.


1992 ◽  
Vol 2 (9) ◽  
pp. 1371-1387 ◽  
Author(s):  
J C Romero ◽  
V Lahera ◽  
M G Salom ◽  
M L Biondi

The role of nitric oxide in renal function has been assessed with pharmacologic and physiologic interventions. Pharmacologically, the renal vasodilation and, to some extent, the natriuresis produced by endothelium-dependent vasodilators such as acetylcholine and bradykinin are mediated by nitric oxide and also by prostaglandins. However, prostaglandins and nitric oxide do not participate in the renal effects produced by endothelium-independent vasodilators such as atrial natriuretic peptide, prostaglandin I2, and nitroprusside. Physiologically, nitric oxide and prostaglandins exert a strong regulation on the effects produced by changes in renal perfusion pressure. Increments in renal perfusion pressure within the range of RBF autoregulation appear to inhibit prostaglandin synthesis while simultaneously enhancing the formation of nitric oxide. Nitric oxide modulates autoregulatory vasoconstriction and at the same time inhibits renin release. Conversely, a decrease of renal perfusion pressure to the limit of or below RBF autoregulation may inhibit the synthesis of nitric oxide but may trigger the release of prostaglandins, whose vasodilator action ameliorates the fall in RBF and stimulates renin release. Nitric oxide and prostaglandins are also largely responsible for mediating pressure-induced natriuresis. However, unlike prostaglandins, mild impairment of the synthesis of nitric oxide in systemic circulation produces a sustained decrease in sodium excretion, which renders blood pressure susceptible to be increased during high-sodium intake. This effect suggests that a deficiency in the synthesis of nitric oxide could constitute the most effective single disturbance to foster the development of a syndrome similar to that seen in salt-sensitive hypertension.


2018 ◽  
Vol 50 (6) ◽  
pp. 440-447 ◽  
Author(s):  
Louise C. Evans ◽  
Alex Dayton ◽  
Chun Yang ◽  
Pengyuan Liu ◽  
Theresa Kurth ◽  
...  

Studies exploring the development of hypertension have traditionally been unable to distinguish which of the observed changes are underlying causes from those that are a consequence of elevated blood pressure. In this study, a custom-designed servo-control system was utilized to precisely control renal perfusion pressure to the left kidney continuously during the development of hypertension in Dahl salt-sensitive rats. In this way, we maintained the left kidney at control blood pressure while the right kidney was exposed to hypertensive pressures. As each kidney was exposed to the same circulating factors, differences between them represent changes induced by pressure alone. RNA sequencing analysis identified 1,613 differently expressed genes affected by renal perfusion pressure. Three pathway analysis methods were applied, one a novel approach incorporating arterial pressure as an input variable allowing a more direct connection between the expression of genes and pressure. The statistical analysis proposed several novel pathways by which pressure affects renal physiology. We confirmed the effects of pressure on p-Jnk regulation, in which the hypertensive medullas show increased p-Jnk/Jnk ratios relative to the left (0.79 ± 0.11 vs. 0.53 ± 0.10, P < 0.01, n = 8). We also confirmed pathway predictions of mitochondrial function, in which the respiratory control ratio of hypertensive vs. control mitochondria are significantly reduced (7.9 ± 1.2 vs. 10.4 ± 1.8, P < 0.01, n = 6) and metabolomic profile, in which 14 metabolites differed significantly between hypertensive and control medullas ( P < 0.05, n = 5). These findings demonstrate that subtle differences in the transcriptome can be used to predict functional changes of the kidney as a consequence of pressure elevation.


1992 ◽  
Vol 262 (3) ◽  
pp. R524-R529 ◽  
Author(s):  
N. D. Binder ◽  
D. F. Anderson

We examined the relationship between acute reductions in renal perfusion pressure, as approximated by femoral arterial blood pressure, and plasma renin activity in the uninephrectomized fetal lamb. Renal perfusion pressure was reduced and maintained at a constant value by controlled partial occlusion of the aorta above the renal artery. After 15 min of reduced blood pressure, blood samples were taken for determination of plasma renin activity. This protocol was performed 22 times in 11 fetal lambs. Additionally, three of the fetuses were delivered by cesarean section and studied as newborns for the first week of life. In the fetus, there was a linear relationship between log plasma renin activity and femoral arterial blood pressure (P less than 0.01). After birth, the relationship still existed, although it was shifted to the right (P less than 0.0001). We conclude that there is a significant relationship between plasma renin activity and renal perfusion pressure in the fetal lamb, and as early as 1 day after birth, this relationship shifts to the right in the newborn lamb.


1984 ◽  
Vol 246 (6) ◽  
pp. F828-F834 ◽  
Author(s):  
L. I. Kleinman ◽  
R. O. Banks

Pressure natriuresis was studied in anesthetized saline-expanded adult (n = 10) and neonatal (n = 23) dogs. One group (protocol B) received ethacrynic acid and amiloride to block distal nephron function. Studies in the other group (protocol A) were done without diuretics. Renal arterial blood pressure was raised by bilateral carotid artery occlusion. Renal perfusion pressure was then lowered in steps by partially occluding the aorta proximal to the renal arteries. In protocol B carotid occlusion was associated with an increase in both absolute and fractional sodium excretion by adult and newborn dogs. Moreover, there was significant negative correlation (P less than 0.01) between absolute change in renal arterial pressure and change in tubular reabsorption of sodium per milliliter glomerular filtrate for both age groups. For each mmHg increase in blood pressure there was greater inhibition of sodium reabsorption in the puppy (0.55 mueq/ml glomerular filtrate) than in the adult (0.18 mueq/ml, P less than 0.05). In protocol A puppies, the inhibition of sodium reabsorption due to increases in renal perfusion pressure was less than that occurring in protocol B, indicating that some of the sodium escaping proximal nephron reabsorption was reabsorbed distally. Results of these studies indicate that during saline expansion pressure natriuresis is primarily a proximal tubular event, and the sensitivity of the proximal tubule to changes in renal arterial blood pressure is greater in the newborn than the adult kidney.


1993 ◽  
Vol 265 (2) ◽  
pp. F285-F292 ◽  
Author(s):  
J. Hoffend ◽  
A. Cavarape ◽  
K. Endlich ◽  
M. Steinhausen

The influence of endothelium-derived relaxing factor (EDRF) on renal microvessels and autoregulation was visualized in vivo, in the split hydronephrotic kidney of rats. EDRF synthesis was inhibited by local administration of 10(-5) M NG-nitro-L-arginine methyl ester (L-NAME). Diameters of arcuate arteries decreased by 17%. In cortical vessels efferent arterioles constricted more (13-16%) than interlobular arteries and afferent arterioles (7-12%). Cortical glomerular blood flow (GBF) decreased by 46% after L-NAME. A similar behavior of blood flow and vascular diameters was also observed in juxtamedullary (JM) arterioles. The responses to acetylcholine but not to sodium nitroprusside were attenuated after L-NAME. After local administration of L-arginine (10(-3) M) diameters of all vessels and GBF increased, vascular responses to L-NAME were blunted. Stepwise reduction of renal perfusion pressure revealed that autoregulation was preserved in cortical vessels after L-NAME. In JM arterioles, which do not autoregulate in female Wistar rats, autoregulation of GBF was enhanced after L-NAME. These data suggest that tonic formation of EDRF influences basal renal hemodynamics to a considerable extent. EDRF may also impair autoregulation of JM glomeruli without disturbing autoregulation of cortical glomeruli.


1976 ◽  
Vol 51 (s3) ◽  
pp. 85s-87s
Author(s):  
A. Stella ◽  
F. Calaresu ◽  
A. Zanchetti

1. Renin release from an intact, innervated kidney and from the contralateral denervated kidney was measured before and during a period of suprarenal aortic stenosis. 2. Aortic stenosis of 10 min duration reduced renal perfusion pressure to 50 mmHg and increased renin release from both kidneys, but the response from the innervated kidney was greater. 3. A study of the time-course of the response during 30 min of aortic stenosis showed that the difference in rate of renin release between the innervated and the denervated kidney is greatest during the first few minutes of aortic stenosis.


Sign in / Sign up

Export Citation Format

Share Document