Nitric oxide inhibits bafilomycin-sensitive H(+)-ATPase activity in rat cortical collecting duct

1994 ◽  
Vol 267 (4) ◽  
pp. F509-F515 ◽  
Author(s):  
A. Tojo ◽  
N. J. Guzman ◽  
L. C. Garg ◽  
C. C. Tisher ◽  
K. M. Madsen

Nitric oxide (NO) is a messenger molecule that is produced from L-arginine by NO synthase (NOS). Some NOS isoforms are present in cells constitutively, whereas others can be induced by cytokines. Recent evidence suggests that NO inhibits intracellular pH regulation by the vacuolar H(+)-adenosinetriphosphatase (ATPase) in macrophages, which contain an inducible form of NOS. The vacuolar H(+)-ATPase is involved in proton secretion in intercalated cells in the collecting duct. We have therefore examined the effect of NO on bafilomycin-sensitive H(+)-ATPase activity in individual cortical collecting ducts (CCD) microdissected from collagenase-treated kidneys of normal rats using a fluorometric microassay. Incubation of CCD with the NO donors, sodium nitroprusside (0.1 and 1 mM) or 3-morpholino-sydnonimine hydrochloride (SIN-1, 30 microM), caused a dose-dependent decrease in H(+)-ATPase activity. Incubation of CCD with lipopolysaccharide (LPS) and interferon-gamma, which induces NOS in macrophages, decreased H(+)-ATPase activity by 85%. This effect was prevented by simultaneous incubation with N omega-nitro-L-arginine, a competitive inhibitor of NOS, indicating that the decrease in H(+)-ATPase activity was caused by NO production. Incubation with 8-bromo-guanosine 3',5'-cyclic monophosphate (cGMP) also inhibited H(+)-ATPase activity, suggesting that NO may exert its effect in the CCD via activation of guanylyl cyclase and production of cGMP. Immunohistochemistry using antibodies to the macrophage-type NOS revealed strong labeling of intercalated cells in the CCD, confirming the presence of NOS in these cells.(ABSTRACT TRUNCATED AT 250 WORDS)

2000 ◽  
Vol 279 (1) ◽  
pp. F195-F202 ◽  
Author(s):  
Randi B. Silver ◽  
Sylvie Breton ◽  
Dennis Brown

Intercalated cells (ICs) from kidney collecting ducts contain proton-transporting ATPases (H+-ATPases) whose plasma membrane expression is regulated under a variety of conditions. It has been shown that net proton secretion occurs in the distal nephron from chronically K+-depleted rats and that upregulation of tubular H+- ATPase is involved in this process. However, regulation of this protein at the level of individual cells has not so far been examined. In the present study, H+-ATPase activity was determined in individually identified ICs from control and chronically K+-depleted rats (9–14 days on a low-K+ diet) by monitoring K+- and Na+-independent H+ extrusion rates after an acute acid load. Split-open rat cortical collecting tubules were loaded with the intracellular pH (pHi) indicator 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and pHiwas determined by using ratiometric fluorescence imaging. The rate of pHi recovery in ICs in response to an acute acid load, a measure of plasma membrane H+-ATPase activity, was increased after K+ depletion to almost three times that of controls. Furthermore, the lag time before the start of pHirecovery after the cells were maximally acidified fell from 93.5 ± 13.7 s in controls to 24.5 ± 2.1 s in K+-depleted rats. In all ICs tested, Na+- and K+-independent pHi recovery was abolished in the presence of bafilomycin (100 nM), an inhibitor of the H+-ATPase. Analysis of the cell-to-cell variability in the rate of pHi recovery reveals a change in the distribution of membrane-bound proton pumps in the IC population of cortical collecting duct from K+-depleted rats. Immunocytochemical analysis of collecting ducts from control and K+-depleted rats showed that K+-depletion increased the number of ICs with tight apical H+ATPase staining and decreased the number of cells with diffuse or basolateral H+-ATPase staining. Taken together, these data indicate that chronic K+ depletion induces a marked increase in plasma membrane H+ATPase activity in individual ICs.


1992 ◽  
Vol 262 (4) ◽  
pp. F692-F695 ◽  
Author(s):  
J. D. Gifford ◽  
L. Rome ◽  
J. H. Galla

Previous studies have suggested the presence of an H(+)-K(+)-ATPase in rat cortical and medullary intercalated cells with similar properties to the gastric proton pump. The purpose of this study was to determine the functional contribution of an H(+)-K(+)-adenosinetriphosphatase(ATPase) to total CO2 (tCO2) transport along the rat collecting duct. After baseline determination of tCO2 transport in isolated perfused collecting duct segments, Sch 28080 (10 microM) was added to either the perfusate or bath. When Sch 28080 was added to the perfusate, there was no effect in the cortical collecting duct (CCD, 20.8 +/- 6.7 vs. 25.3 + 3.0 pmol.mm-1.min-1), but a marked decrease in tCO2 absorption was effected in both the outer medullary (OMCD, 37.6 + 6.2 vs. 10.7 +/- 4.1 pmol.mm-1.min-1) and initial inner medullary collecting duct (IMCD1, 34.4 +/- 8.1 vs. 16.2 +/- 5.6 pmol.mm-1.min-1). In the CCD from rats with acute alkalosis in vivo, Sch 28080 added to the bath inhibited tCO2 secretion in the CCD (-17.1 +/- 4.4 vs 3.5 + 3.3 pmol.mm-1.min-1). These findings suggest that 1) H(+)-K(+)-ATPase is important in tCO2 absorption in the OMCD and IMCD1 and in tCO2 secretion in the CCD, 2) HCO3(-)-absorbing intercalated cells differ functionally in the cortex and medulla, 3) HCO3- secretion is not the reverse process of HCO3- absorption in the CCD, and 4) H(+)-K(+)-ATPase is important in distal acidification under normal and altered acid-base conditions.


1999 ◽  
Vol 276 (6) ◽  
pp. F874-F881 ◽  
Author(s):  
Feng Wu ◽  
Frank Park ◽  
Allen W. Cowley ◽  
David L. Mattson

This study was designed to quantify nitric oxide synthase (NOS) activity in microdissected glomeruli (Glm), pars convoluta, pars recta, cortical collecting duct, cortical thick ascending limb, outer medullary collecting duct, medullary thick ascending limb and thin limb, inner medullary collecting duct (IMCD) and thin limb, and vasa recta (VR). Total protein from microdissected segments was incubated withl-[3H]arginine and appropriate cofactors, and thel-arginine and convertedl-citrulline were separated by reverse-phase HPLC and radiochemically quantitated. NOS activity was found to be greatest in IMCD (11.5 ± 1.0 fmol citrulline ⋅ mm−1 ⋅ h−1) and moderate in Glm (1.9 ± 0.3 fmol ⋅ glomerulus−1 ⋅ h−1) and VR (3.2 ± 0.8 fmol ⋅ mm−1 ⋅ h−1). All other renal structures studied exhibited significantly less NOS activity. The mRNA for NOS isoforms in the NOS activity-positive segments was then identified by RT-PCR. The IMCD contained mRNA for neuronal (nNOS), endothelial (eNOS), and inducible NOS (iNOS), but Glm and VR only expressed the mRNA for nNOS and eNOS. These experiments demonstrate that the greatest enzymatic activity for NO production in the kidney is in the IMCD, three- to sixfold less activity is present in the Glm and VR, and minimal NOS activity is found in other segments studied.


1997 ◽  
Vol 272 (2) ◽  
pp. F167-F177 ◽  
Author(s):  
A. Constantinescu ◽  
R. B. Silver ◽  
L. M. Satlin

Functional and immunocytochemical studies indicate that intercalated cells in the adult rabbit cortical collecting duct (CCD) possess an H-K-adenosinetriphosphatase (H-K-ATPase). Because growing subjects must retain K+ and excrete H+, we sought to determine whether H-K-ATPase is present in the CCD early in life and, if so, to assess its activity and polarity. H-K-ATPase activity was defined as the initial rate of Sch-28080-inhibitable K+-dependent cell pH (pHi) recovery observed, in the absence of Na+, in response to an in vitro acid load. Transporter activity was assayed in intercalated cells labeled with the pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and apical cell surface marker rhodamine peanut lectin (PNA) in split-open CCDs isolated from neonatal and adult New Zealand White rabbits. In Na+-free N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid-buffered solutions (nominal absence of CO2/HCO3-), the rate of K+-dependent pH(i) recovery from a NH4Cl-induced acid load was similar in newborn (0.056 +/- 0.015 pH U/min, n = 9) and adult (0.060 +/- 0.019 pH U/min; n = 9, P = not significant) cells. This rate of K+-dependent pH(i) recovery was significantly reduced by 10-20 pM Sch-28080, an inhibitor of gastric H-K-ATPase, in both newborns (0.009 +/- 0.003 pH U/min, n = 7) and adults (0.013 +/- 0.007 pH U/min, n = 9) (P < 0.05 compared with rates in absence of inhibitor). To determine whether the location of the transporter is consistent with a role in K+ absorption and H+ secretion, pH(i) recovery of acutely acid-loaded intercalated cells in neonatal CCDs (n = 7) microperfused and bathed in the absence of Na+ and K+ was monitored after selective addition of K+ to either the luminal or basolateral membrane. Addition of 5 mM K+ led to a significantly greater rate of pH(i) recovery when it was added to the luminal rather than the peritubular solution (0.049 +/- 0.005 vs. 0.018 +/- 0.005 pH U/min, P < 0.05). We conclude that PNA-binding intercalated cells of the neonatal CCD possess H-K-ATPase activity, predominantly located in the apical membrane. This provides a mechanism for H secretion and K+ retention, processes required for growth.


1994 ◽  
Vol 267 (6) ◽  
pp. F1045-F1051 ◽  
Author(s):  
A. Tojo ◽  
C. C. Tisher ◽  
K. M. Madsen

Angiotensin II (ANG II) plays an important role in the regulation of solute transport in the kidney, and its effect on proximal tubule sodium and fluid transport has been studied extensively. Although there is evidence that ANG II receptors are present also in the distal nephron and collecting duct, little is known about the physiological role of ANG II in these segments of the renal tubule. Preliminary studies in our laboratory suggest that ANG II may have both structural and functional effects on intercalated cells in the cortical collecting duct (CCD). Therefore, the present study examines the effect of ANG II on H(+)-adenosinetriphosphatase (H(+)-ATPase) and H(+)-K(+)-ATPase activity in individual CCD segments microdissected from collagenase-treated rat kidneys. The H(+)-ATPase was measured as bafilomycin-sensitive ATPase activity, and H(+)-K(+)-ATPase was measured as Sch-28080-sensitive ATPase activity, by a fluorometric microassay. Preincubation of CCD segments with ANG II, 10(-10)-10(-5) M, caused a dose-dependent decrease in H(+)-ATPase activity with maximum inhibition at 10(-8) M of ANG II. The inhibitory effect of ANG II was abolished when tubules were incubated with ANG II in the presence of 10(-6) M losartan, indicating that the inhibition was mediated via specific AT1 receptors. The AT2-receptor antagonist, PD-123319, had no effect on the ANG II-mediated inhibition of H(+)-ATPase activity. Preincubation of CCD segments with 10(-10) or 10(-7) M ANG II had no effect on H(+)-K(+)-ATPase activity.(ABSTRACT TRUNCATED AT 250 WORDS)


2013 ◽  
Vol 304 (11) ◽  
pp. F1390-F1397 ◽  
Author(s):  
Vladimir Pech ◽  
Monika Thumova ◽  
Sergey I. Dikalov ◽  
Edith Hummler ◽  
Bernard C. Rossier ◽  
...  

Since nitric oxide (NO) participates in the renal regulation of blood pressure, in part, by modulating transport of Na+ and Cl− in the kidney, we asked whether NO regulates net Cl− flux ( JCl) in the cortical collecting duct (CCD) and determined the transporter(s) that mediate NO-sensitive Cl− absorption. Cl− absorption was measured in CCDs perfused in vitro that were taken from aldosterone-treated mice. Administration of an NO donor (10 μM MAHMA NONOate) reduced JCl and transepithelial voltage ( VT) both in the presence or absence of angiotensin II. However, reducing endogenous NO production by inhibiting NO synthase (100 μM NG-nitro-l-arginine methyl ester) increased JCl only in the presence of angiotensin II, suggesting that angiotensin II stimulates NO synthase activity. To determine the transport process that mediates NO-sensitive changes in JCl, we examined the effect of NO on JCl following either genetic ablation or chemical inhibition of transporters in the CCD. Since the application of hydrochlorothiazide (100 μM) or bafilomycin (5 nM) to the perfusate or ablation of the gene encoding pendrin did not alter NO-sensitive JCl, NO modulates JCl independent of the Na+-dependent Cl−/HCO3− exchanger (NDCBE, Slc4a8), the A cell apical plasma membrane H+-ATPase and pendrin. In contrast, both total and NO-sensitive JCl and VT were abolished with application of an epithelial Na+ channel (ENaC) inhibitor (3 μM benzamil) to the perfusate. We conclude that NO reduces Cl− absorption in the CCD through a mechanism that is ENaC-dependent.


2013 ◽  
Vol 304 (4) ◽  
pp. F422-F431 ◽  
Author(s):  
Jesse M. Bishop ◽  
Hyun-Wook Lee ◽  
Mary E. Handlogten ◽  
Ki-Hwan Han ◽  
Jill W. Verlander ◽  
...  

The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.


2002 ◽  
Vol 283 (6) ◽  
pp. L1192-L1199 ◽  
Author(s):  
Philip W. Shaul ◽  
Sam Afshar ◽  
Linda L. Gibson ◽  
Todd S. Sherman ◽  
Jay D. Kerecman ◽  
...  

Nitric oxide (NO), produced by NO synthase (NOS), plays a critical role in multiple processes in the lung during the perinatal period. To better understand the regulation of pulmonary NO production in the developing primate, we determined the cell specificity and developmental changes in NOS isoform expression and action in the lungs of third-trimester fetal baboons. Immunohistochemistry in lungs obtained at 175 days (d) of gestation (term = 185 d) revealed that all three NOS isoforms, neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS), are primarily expressed in proximal airway epithelium. In proximal lung, there was a marked increase in total NOS enzymatic activity from 125 to 140 d gestation due to elevations in nNOS and eNOS, whereas iNOS expression and activity were minimal. Total NOS activity was constant from 140 to 175 d gestation, and during the latter stage (160–175 d gestation), a dramatic fall in nNOS and eNOS was replaced by a rise in iNOS. Studies done within 1 h of delivery at 125 or 140 d gestation revealed that the principal increase in NOS during the third trimester is associated with an elevation in exhaled NO levels, a decline in expiratory resistance, and greater pulmonary compliance. Thus, there are developmental increases in pulmonary NOS expression and NO production during the early third trimester in the primate that may enhance airway and parenchymal function in the immediate postnatal period.


2002 ◽  
Vol 283 (4) ◽  
pp. R983-R992 ◽  
Author(s):  
Peter M. Piermarini ◽  
Jill W. Verlander ◽  
Ines E. Royaux ◽  
David H. Evans

Pendrin is an anion exchanger in the cortical collecting duct of the mammalian nephron that appears to mediate apical Cl−/HCO[Formula: see text]exchange in bicarbonate-secreting intercalated cells. The goals of this study were to determine 1) if pendrin immunoreactivity was present in the gills of a euryhaline elasmobranch (Atlantic stingray, Dasyatis sabina), and 2) if branchial pendrin immunoreactivity was influenced by environmental salinity. Immunoblots detected pendrin immunoreactivity in Atlantic stingray gills; pendrin immunoreactivity was greatest in freshwater stingrays compared with freshwater stingrays acclimated to seawater (seawater acclimated) and marine stingrays. Using immunohistochemistry, pendrin-positive cells were detected on both gill lamellae and interlamellar regions of freshwater stingrays but were more restricted to interlamellar regions in seawater-acclimated and marine stingray gills. Pendrin immunolabeling in freshwater stingray gills was more apical, discrete, and intense compared with seawater-acclimated and marine stingrays. Regardless of salinity, pendrin immunoreactivity occurred on the apical region of cells rich with basolateral vacuolar-proton-ATPase, and not in Na+-K+-ATPase-rich cells. We suggest that a pendrin-like transporter may contribute to apical Cl−/HCO[Formula: see text] exchange in gills of Atlantic stingrays from both freshwater and marine environments.


1997 ◽  
Vol 272 (6) ◽  
pp. L1167-L1173 ◽  
Author(s):  
S. P. Kantrow ◽  
Y. C. Huang ◽  
A. R. Whorton ◽  
E. N. Grayck ◽  
J. M. Knight ◽  
...  

Nitric oxide (NO.) has been proposed to modulate hypoxic vasoconstriction in the lung. The activity of nitric oxide synthase (NOS) can be inhibited by hypoxia because molecular oxygen is a necessary substrate for the enzyme. On the basis of this mechanism, we hypothesized that NOS activity has a key role in regulation of pulmonary vascular tone during hypoxia. We measured oxidation products of NO. released into the vasculature of isolated buffer-perfused rabbit lung ventilated with normoxic (21% O2), moderately hypoxic (5% O2), or anoxic (0% O2) gas using two methods. Mean PO2 in perfusate exiting the lung was 25 Torr during anoxic ventilation and 47 Torr during moderately hypoxic ventilation. We found that the amount of the NO. oxidation product nitrite released into the perfusate was suppressed significantly during ventilation with anoxic but not moderately hypoxic gas. During normoxic ventilation, nitrite release was inhibited by pretreatment with NG-monomethyl-L-arginine, a competitive inhibitor of NOS. To confirm that changes in nitrite concentration reflected changes in NO. release into the perfusate, major oxidation products of NO. (NOx) were assayed using a method for reduction of these products to NO. by vanadium(III) Cl. Release of NOx into the perfusate was suppressed by severe hypoxia (anoxic ventilation), and this effect was reversed by normoxia. Pulmonary vasoconstriction was observed during severe but not moderate hypoxia and was related inversely to the rate of nitrite release. These observations provide evidence that decreased NO. production contributes to the pulmonary vasoconstrictor response during severe hypoxia.


Sign in / Sign up

Export Citation Format

Share Document