proton atpase
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 13)

H-INDEX

35
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Zirong Ren ◽  
Bazhen Suolang ◽  
Tadashi Fujiwara ◽  
Dan Yang ◽  
Yusuke Saijo ◽  
...  

Plasma membrane proton-ATPase (PM H+-ATPase) is a primary H+ transporter that consumes ATP in vivo and is a limiting factor in the blue light-induced stomatal opening signaling pathway. It was recently reported that manipulation of PM H+-ATPase in stomatal guard cells and other tissues greatly improved leaf photosynthesis and plant growth. In this report, we review and discuss the function of PM H+-ATPase in the context of the promotion and upregulation H+-ATPase strategy, including associated principles pertaining to enhanced stomatal opening, environmental plasticity, and potential applications in crops and nanotechnology. We highlight the great potential of the promotion and upregulation H+-ATPase strategy, and explain why it may be applied in many crops in the future.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3537
Author(s):  
Hussein Abuammar ◽  
Arindam Bhattacharjee ◽  
Zsófia Simon-Vecsei ◽  
András Blastyák ◽  
Gábor Csordás ◽  
...  

Autophagy, the process of cellular self-degradation, is intrinsically tied to the degradative function of the lysosome. Several diseases have been linked to lysosomal degradative defects, including rare lysosomal storage disorders and neurodegenerative diseases. Ion channels and pumps play a major regulatory role in autophagy. Importantly, calcium signaling produced by TRPML1 (transient receptor potential cation channel, mucolipin subfamily) has been shown to regulate autophagic progression through biogenesis of autophagic-lysosomal organelles, activation of mTORC1 (mechanistic target of rapamycin complex 1) and degradation of autophagic cargo. ER calcium channels such as IP3Rs supply calcium for the lysosome, and lysosomal function is severely disrupted in the absence of lysosomal calcium replenishment by the ER. TRPML1 function is also regulated by LC3 (microtubule-associated protein light chain 3) and mTORC1, two critical components of the autophagic network. Here we provide an overview of the current knowledge about ion channels and pumps—including lysosomal V-ATPase (vacuolar proton-ATPase), which is required for acidification and hence proper enzymatic activity of lysosomal hydrolases—in the regulation of autophagy, and discuss how functional impairment of some of these leads to diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pál Petrovszki ◽  
Krisztina Sebők-Nagy ◽  
Tibor Páli

The effect of an oscillating electric field generated from music on yeast vacuolar proton-ATPase (V-ATPase) activity in its native environment is reported. An oscillating electric field is generated by electrodes that are immersed into a dispersion of yeast vacuolar membrane vesicles natively hosting a high concentration of active V-ATPase. The substantial difference in the ATP hydrolysing activity of V-ATPase under the most stimulating and inhibiting music is unprecedented. Since the topic, i.e., an effect of music on biomolecules, is very attractive for non-scientific, esoteric mystification, we provide a rational explanation for the observed new phenomenon. Good correlation is found between changes in the specific activity of the enzyme and the combined intensity of certain frequency bands of the Fourier spectra of the music clips. Most prominent identified frequencies are harmonically related to each other and to the estimated rotation rate of the enzyme. These results lead to the conclusion that the oscillating electric field interferes with periodic trans-membrane charge motions in the working enzyme.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ge-Hong Sun-Wada ◽  
Hiroyuki Tabata ◽  
Yoh Wada

AbstractThe endocytic compartments keep their interior acidic through the inward flow of protons and anions from the cytosol. Acidification is mediated by a proton pump known as vacuolar-type ATPase (V-ATPase) and transporters conferring anion conductance to the organellar membrane. In this study, we analysed the phenotype of mouse embryos lacking the V-ATPase c-subunit. The mutant embryos differentiated embryonic epithelial tissues, primitive endoderm, epiblast, and extraembryonic ectoderm; however, the organisation of these epithelia was severely affected. The apical-basal polarity in the visceral endoderm layer was not properly established in the mutant embryos, resulting in abnormal epithelial morphology. Thus, the function of V-ATPase is imperative for the establishment and/or maintenance of epithelial cell polarity, which is required for early embryogenesis.


2021 ◽  
Vol 22 (17) ◽  
pp. 9348
Author(s):  
Heli Pan ◽  
Shiheng Lyu ◽  
Yanqiong Chen ◽  
Shirong Xu ◽  
Jianwen Ye ◽  
...  

‘Liuyuezaoyou’ is an early-ripening cultivar selected from a bud mutation of Citrus grandis Osbeck ‘Guanximiyou’. They were designated here as MT and WT, respectively. The fruit of MT matures about 45 days earlier than WT, which was accompanied by significant changes in key phytohormones, sugar compounds and organic acids. Recent studies have showed that microRNAs (miRNAs) play an important role in regulation of fruit ripening process. The aim of this study was to compare MT fruits with WT ones to uncover if miRNAs were implicated in the ripening of C. grandis. Fruits of both WT and MT at four developmental stages were analyzed using high-throughput sequencing and RT-PCR. Several independent miRNA libraries were constructed and sequenced. A total of 747 known miRNAs were identified and 99 novel miRNAs were predicted across all libraries. The novel miRNAs were found to have hairpin structures and possess star sequences. These results showed that transcriptome and miRNAs are substantially involved in a complex and comprehensive network in regulation of fruit ripening of this species. Further analysis of the network model revealed intricate interactions of miRNAs with mRNAs during the fleshy fruit ripening process. Several identified miRNAs have potential targets. These include auxin-responsive protein IAA9, sucrose synthase 3, V-type proton ATPase, NCED1 (ABA biosynthesis) and PL1/5 (pectate lyase genes), as well as NAC100 putative coordinated regulation networks, whose interactions with respective miRNAs may contribute significantly to fruit ripening of C. grandis.


2021 ◽  
Vol 55 (1 (254)) ◽  
pp. 67-74
Author(s):  
Heghine Kh. Gevorgyan ◽  
Anait V. Vassilian ◽  
Karen A. Trchounian

This research is focused on the investigation of specific growth rate changes of $E.~coli$ wild type and mutant strains with defect of Hyd, FDH enzymes and FhlA regulatory protein in the presence of $N,N'$-dicyclohexylcarbodiimide (DCCD) and external formate various concentration during co-fermentation of glucose, glycerol and formate at pHs $5.5-7.5.$ The highest value of SGR was observed at pH 7.5. It was revealed that SGR depends on external formate concentration at all pHs. DCCD inhibitory effect was shown mainly at pH 7.5 and partially at pH 6.5 and 5.5. In the case of the F0F1-ATPase inhibition FhlA compensatory effect on SGR was revealed.


2021 ◽  
Author(s):  
Shahan Mamoor

Metastasis to the brain is a clinical problem in patients with breast cancer (1-3). We mined published microarray data (4, 5) to compare primary and metastatic tumor transcriptomes for the discovery of genes associated with brain metastasis in humans with metastatic breast cancer. We found that the S1 subunit of the V-type proton ATPase, encoded by ATP6AP1, was among the genes whose expression was most different in the brain and lymph node metastases of patients with metastatic breast cancer. ATP6AP1 mRNA was present at increased quantities in brain metastatic tissues as compared to primary tumors of the breast. Importantly, expression of ATP6AP1 in primary tumors was significantly correlated with patient recurrence-free survival in patients with breast cancer. Modulation of ATP6AP1 expression may be relevant to the biology by which tumor cells metastasize from the breast to the brain while evading immune clearance in the lymph nodes in humans with metastatic breast cancer.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 871
Author(s):  
Andreia Bento-Oliveira ◽  
Filipa C. Santos ◽  
Joaquim Trigo Marquês ◽  
Pedro M. R. Paulo ◽  
Thomas Korte ◽  
...  

The relevance of mannosyldiinositolphosphorylceramide [M(IP)2C] synthesis, the terminal complex sphingolipid class in the yeast Saccharomyces cerevisiae, for the lateral organization of the plasma membrane, and in particular for sphingolipid-enriched gel domains, was investigated by fluorescence spectroscopy and microscopy. We also addressed how changing the complex sphingolipid profile in the plasma membrane could influence the membrane compartments (MC) containing either the arginine/ H+ symporter Can1p (MCC) or the proton ATPase Pma1p (MCP). To achieve these goals, wild-type (wt) and ipt1Δ cells, which are unable to synthesize M(IP)2C accumulating mannosylinositolphosphorylceramide (MIPC), were compared. Living cells, isolated plasma membrane and giant unilamellar vesicles reconstituted from plasma membrane lipids were labelled with various fluorescent membrane probes that report the presence and organization of distinct lipid domains, global order, and dielectric properties. Can1p and Pma1p were tagged with GFP and mRFP, respectively, in both yeast strains, to evaluate their lateral organization using confocal fluorescence intensity and fluorescence lifetime imaging. The results show that IPT1 deletion strongly affects the rigidity of gel domains but not their relative abundance, whereas no significant alterations could be perceived in ergosterol-enriched domains. Moreover, in these cells lacking M(IP)2C, a clear alteration in Pma1p membrane distribution, but no significant changes in Can1p distribution, were observed. Thus, this work reinforces the notion that sphingolipid-enriched domains distinct from ergosterol-enriched regions are present in the S. cerevisiae plasma membrane and suggests that M(IP)2C is important for a proper hydrophobic chain packing of sphingolipids in the gel domains of wt cells. Furthermore, our results strongly support the involvement of sphingolipid domains in the formation and stability of the MCP, possibly being enriched in this compartment.


IUBMB Life ◽  
2020 ◽  
Vol 72 (5) ◽  
pp. 915-921 ◽  
Author(s):  
Heghine Gevorgyan ◽  
Armen Trchounian ◽  
Karen Trchounian

Sign in / Sign up

Export Citation Format

Share Document