Angiotensin II regulates H(+)-ATPase activity in rat cortical collecting duct

1994 ◽  
Vol 267 (6) ◽  
pp. F1045-F1051 ◽  
Author(s):  
A. Tojo ◽  
C. C. Tisher ◽  
K. M. Madsen

Angiotensin II (ANG II) plays an important role in the regulation of solute transport in the kidney, and its effect on proximal tubule sodium and fluid transport has been studied extensively. Although there is evidence that ANG II receptors are present also in the distal nephron and collecting duct, little is known about the physiological role of ANG II in these segments of the renal tubule. Preliminary studies in our laboratory suggest that ANG II may have both structural and functional effects on intercalated cells in the cortical collecting duct (CCD). Therefore, the present study examines the effect of ANG II on H(+)-adenosinetriphosphatase (H(+)-ATPase) and H(+)-K(+)-ATPase activity in individual CCD segments microdissected from collagenase-treated rat kidneys. The H(+)-ATPase was measured as bafilomycin-sensitive ATPase activity, and H(+)-K(+)-ATPase was measured as Sch-28080-sensitive ATPase activity, by a fluorometric microassay. Preincubation of CCD segments with ANG II, 10(-10)-10(-5) M, caused a dose-dependent decrease in H(+)-ATPase activity with maximum inhibition at 10(-8) M of ANG II. The inhibitory effect of ANG II was abolished when tubules were incubated with ANG II in the presence of 10(-6) M losartan, indicating that the inhibition was mediated via specific AT1 receptors. The AT2-receptor antagonist, PD-123319, had no effect on the ANG II-mediated inhibition of H(+)-ATPase activity. Preincubation of CCD segments with 10(-10) or 10(-7) M ANG II had no effect on H(+)-K(+)-ATPase activity.(ABSTRACT TRUNCATED AT 250 WORDS)

Author(s):  
Ye Feng ◽  
Kexin Peng ◽  
Renfei Luo ◽  
Fei Wang ◽  
Tianxin Yang

Activation of PRR ([pro]renin receptor) contributes to enhancement of intrarenal RAS and renal medullary α-ENaC and thus elevated blood pressure during Ang II (angiotensin II) infusion. The goal of the present study was to test whether such action of PRR was mediated by sPRR (soluble PRR), generated by S1P (site-1 protease), a newly identified PRR cleavage protease. F1 B6129SF1/J mice were infused for 6 days with control or Ang II at 300 ng/kg per day alone or in combination with S1P inhibitor PF-429242 (PF), and blood pressure was monitored by radiotelemetry. S1P inhibition significantly attenuated Ang II–induced hypertension accompanied with suppressed urinary and renal medullary renin levels and expression of renal medullary but not renal cortical α-ENaC expression. The effects of S1P inhibition were all reversed by supplement with histidine-tagged sPRR termed as sPRR-His. Ussing chamber technique was performed to determine amiloride-sensitive short-circuit current, an index of ENaC activity in confluent mouse cortical collecting duct cell line cells exposed for 24 hours to Ang II, Ang II + PF, or Ang II + PF + sPRR-His. Ang II–induced ENaC activity was blocked by PF, which was reversed by sPRR-His. Together, these results support that S1P-derived sPRR mediates Ang II–induced hypertension through enhancement of intrarenal renin level and activation of ENaC.


1994 ◽  
Vol 267 (4) ◽  
pp. F509-F515 ◽  
Author(s):  
A. Tojo ◽  
N. J. Guzman ◽  
L. C. Garg ◽  
C. C. Tisher ◽  
K. M. Madsen

Nitric oxide (NO) is a messenger molecule that is produced from L-arginine by NO synthase (NOS). Some NOS isoforms are present in cells constitutively, whereas others can be induced by cytokines. Recent evidence suggests that NO inhibits intracellular pH regulation by the vacuolar H(+)-adenosinetriphosphatase (ATPase) in macrophages, which contain an inducible form of NOS. The vacuolar H(+)-ATPase is involved in proton secretion in intercalated cells in the collecting duct. We have therefore examined the effect of NO on bafilomycin-sensitive H(+)-ATPase activity in individual cortical collecting ducts (CCD) microdissected from collagenase-treated kidneys of normal rats using a fluorometric microassay. Incubation of CCD with the NO donors, sodium nitroprusside (0.1 and 1 mM) or 3-morpholino-sydnonimine hydrochloride (SIN-1, 30 microM), caused a dose-dependent decrease in H(+)-ATPase activity. Incubation of CCD with lipopolysaccharide (LPS) and interferon-gamma, which induces NOS in macrophages, decreased H(+)-ATPase activity by 85%. This effect was prevented by simultaneous incubation with N omega-nitro-L-arginine, a competitive inhibitor of NOS, indicating that the decrease in H(+)-ATPase activity was caused by NO production. Incubation with 8-bromo-guanosine 3',5'-cyclic monophosphate (cGMP) also inhibited H(+)-ATPase activity, suggesting that NO may exert its effect in the CCD via activation of guanylyl cyclase and production of cGMP. Immunohistochemistry using antibodies to the macrophage-type NOS revealed strong labeling of intercalated cells in the CCD, confirming the presence of NOS in these cells.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 302 (6) ◽  
pp. F679-F687 ◽  
Author(s):  
Peng Sun ◽  
Peng Yue ◽  
Wen-Hui Wang

We examined the effect of angiotensin II (ANG II) on epithelial Na+channel (ENaC) in the rat cortical collecting duct (CCD) with single-channel and the perforated whole cell patch-clamp recording. Application of 50 nM ANG II increased ENaC activity, defined by NPo(a product of channel numbers and open probability), and the amiloride-sensitive whole cell Na currents by twofold. The stimulatory effect of ANG II on ENaC was absent in the presence of losartan, suggesting that the effect of ANG II on ENaC was mediated by ANG II type 1 receptor. Moreover, depletion of intracellular Ca2+with 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid (BAPTA)-AM failed to abolish the stimulatory effect of ANG II on ENaC but inhibiting protein kinase C (PKC) abolished the effect of ANG II, suggesting that the effect of ANG II was the result of stimulating Ca2+-independent PKC. This notion was also suggested by the experiments in which stimulation of PKC with phorbol ester derivative mimicked the effect of ANG II and increased amiloride-sensitive Na currents in the principal cell, an effect that was not abolished by treatment of the CCD with BAPTA-AM. Also, inhibition of NADPH oxidase (NOX) with diphenyleneiodonium chloride abolished the stimulatory effect of ANG II on ENaC and application of superoxide donors, pyrogallol or xanthine and xanthine oxidase, significantly increased ENaC activity. Moreover, addition of ANG II or H2O2diminished the arachidonic acid (AA)-induced inhibition of ENaC in the CCD. We conclude that ANG II stimulates ENaC in the CCD through a Ca2+-independent PKC pathway that activates NOX thereby increasing superoxide generation. The stimulatory effect of ANG II on ENaC may be partially the result of blocking AA-induced inhibition of ENaC.


1996 ◽  
Vol 271 (6) ◽  
pp. F1147-F1157 ◽  
Author(s):  
K. D. Burns ◽  
L. Regnier ◽  
A. Roczniak ◽  
R. L. Hebert

Rabbit cortical collecting duct (CCD) cells were immortalized to study angiotensin II (ANG II) signaling in the CCD. Transfected cells retained CCD properties; arginine vasopressin (AVP), prostaglandin E2, and isoproterenol (10(-7) M) all significantly stimulated adenosine 3',5'-cyclic monophosphate (cAMP) production; and parathyroid hormone and calcitonin had no effect on cAMP. Twenty-seven percent of transfected cells bound the beta-intercalated cell marker peanut lectin agglutinin, whereas antibodies against principal cells and alpha-intercalated cells immunolabeled 26% of cells. All cells stained with antibodies to the epithelial cell marker cytokeratin. By contrast, no immunofluorescence was observed with antibodies to smooth muscle myosin, Tamm-Horsfall protein, or factor VIII. Transfected cells demonstrated amiloride-sensitive transepithelial short-circuit current. In transfected cells, radioligand binding assays detected a single class of ANG II receptors (affinity constant = 0.78 nM), and AT1-receptor mRNA was demonstrated by Northern analysis. ANG II (10(-7) M) significantly inhibited AVP-stimulated cAMP production; lower concentrations (10(-10) M) increased phosphoinositide hydrolysis. In summary, we immortalized a rabbit CCD cell line that retains characteristic morphological and hormonal properties. These cells express AT1 receptors, coupled to inhibition of cAMP and to stimulation of phosphoinositide turnover. We postulate that these signaling pathways may mediate effects of ANG II on CCD transport and cell growth.


1995 ◽  
Vol 269 (5) ◽  
pp. F730-F738 ◽  
Author(s):  
I. D. Weiner ◽  
A. R. New ◽  
A. E. Milton ◽  
C. C. Tisher

Angiotensin II (ANG II) regulates whole kidney ion transport, yet its effects in the collecting duct are unknown. The purpose of these studies was to determine whether ANG II regulates luminal alkalinization and acidification in the rabbit cortical collecting duct (CCD). The rate of luminal alkalinization or acidification was measured as the rate of change of luminal fluid pH under stop-flow conditions using in vitro microperfused CCD segments. Outer CCD alkalinized the luminal fluid, consistent with net HCO3- secretion. Addition of ANG II, 10(-7) M, to the peritubular solution for 30 min significantly stimulated luminal alkalinization. The stimulatory effect of ANG II was not due to time-dependent effects and was blocked by peritubular addition of the ANG II type 1 (AT1) receptor antagonist, losartan, at 10(-6) M. Losartan, 10(-6) M, when added to the peritubular solution, did not alter the rate of luminal alkalinization independent of ANG II. In contrast, peritubular ANG II, 10(-7) M, did not alter inner CCD luminal acidification. Addition of ANG II to the peritubular solution at the lower concentration of 10(-10) M did not alter the rates of luminal alkalinization and acidification in the outer and inner CCD, respectively. Peritubular ANG II, 10(-7) M, but not vehicle, stimulated B cell apical HCO3- secretion occurring in response to peritubular Cl- removal. These studies demonstrate that ANG II acts through a basolateral AT1 receptor to stimulate outer CCD luminal alkalinization via, at least in part, B cell stimulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juliano Zequini Polidoro ◽  
Nancy Amaral Rebouças ◽  
Adriana Castello Costa Girardi

Adjustments in renal K+ excretion constitute a central mechanism for K+ homeostasis. The renal outer medullary potassium (ROMK) channel accounts for the major K+ secretory route in collecting ducts during basal conditions. Activation of the angiotensin II (Ang II) type 1 receptor (AT1R) by Ang II is known to inhibit ROMK activity under the setting of K+ dietary restriction, underscoring the role of the AT1R in K+ conservation. The present study aimed to investigate whether an AT1R binding partner, the AT1R-associated protein (ATRAP), impacts Ang II-mediated ROMK regulation in collecting duct cells and, if so, to gain insight into the potential underlying mechanisms. To this end, we overexpressed either ATRAP or β-galactosidase (LacZ; used as a control), in M-1 cells, a model line of cortical collecting duct cells. We then assessed ROMK channel activity by employing a novel fluorescence-based microplate assay. Experiments were performed in the presence of 10−10 M Ang II or vehicle for 40 min. We observed that Ang II-induced a significant inhibition of ROMK in LacZ, but not in ATRAP-overexpressed M-1 cells. Inhibition of ROMK-mediated K+ secretion by Ang II was accompanied by lower ROMK cell surface expression. Conversely, Ang II did not affect the ROMK-cell surface abundance in M-1 cells transfected with ATRAP. Additionally, diminished response to Ang II in M-1 cells overexpressing ATRAP was accompanied by decreased c-Src phosphorylation at the tyrosine 416. Unexpectedly, reduced phospho-c-Src levels were also found in M-1 cells, overexpressing ATRAP treated with vehicle, suggesting that ATRAP can also downregulate this kinase independently of Ang II-AT1R activation. Collectively, our data support that ATRAP attenuates inhibition of ROMK by Ang II in collecting duct cells, presumably by reducing c-Src activation and blocking ROMK internalization. The potential role of ATRAP in K+ homeostasis and/or disorders awaits further investigation.


2005 ◽  
Vol 5 ◽  
pp. 680-690 ◽  
Author(s):  
Patricia Valles ◽  
Jan Wysocki ◽  
Daniel Batlle

Angiotensin II, a potent vasoconstrictor, also participates in the regulation of renal sodium and water excretion, not only via a myriad of effects on renal hemodynamics, glomerular filtration rate, and regulation of aldosterone secretion, but also via direct effects on renal tubule transport. In addition, angiotensin II stimulates H+secretion and HCO3–reabsorption in both proximal and distal tubules and regulates H+-ATPase activity in intercalated cells of the collecting tubule. Different results regarding the effect of angiotensin II on bicarbonate reabsorption and proton secretion have been reported at the functional level, depending on the angiotensin II concentration and tubule segment studied. It is likely that interstitial angiotensin II is more important in regulating hemodynamic and transport functions than circulating angiotensin II. In proximal tubules, stimulation of bicarbonate reabsorption, Na+/H+-exchange, and Na+/HCO3–cotransport has been found using low concentrations (<10–9M), while inhibition of bicarbonate reabsorption has been documented using concentrations higher than 10–8M. Evidence for the regulation of H+-ATPase activityin vivoandin vitroby trafficking/exocytosis has been provided. An additional level of H+-ATPase regulation via protein synthesis may be important as well. Recently, we have shown that both aldosterone and angiotensin II provide such a mechanism of regulationin vivoat the level of the medullary collecting tubule. Interestingly, in this part of the nephron, the effects of aldosterone and angiotensin II are not sodium dependent, whereas in the cortical collecting duct, both aldosterone and angiotensin II, by contrast, affect H+secretion by sodium-dependent mechanisms.


2000 ◽  
Vol 279 (1) ◽  
pp. F195-F202 ◽  
Author(s):  
Randi B. Silver ◽  
Sylvie Breton ◽  
Dennis Brown

Intercalated cells (ICs) from kidney collecting ducts contain proton-transporting ATPases (H+-ATPases) whose plasma membrane expression is regulated under a variety of conditions. It has been shown that net proton secretion occurs in the distal nephron from chronically K+-depleted rats and that upregulation of tubular H+- ATPase is involved in this process. However, regulation of this protein at the level of individual cells has not so far been examined. In the present study, H+-ATPase activity was determined in individually identified ICs from control and chronically K+-depleted rats (9–14 days on a low-K+ diet) by monitoring K+- and Na+-independent H+ extrusion rates after an acute acid load. Split-open rat cortical collecting tubules were loaded with the intracellular pH (pHi) indicator 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and pHiwas determined by using ratiometric fluorescence imaging. The rate of pHi recovery in ICs in response to an acute acid load, a measure of plasma membrane H+-ATPase activity, was increased after K+ depletion to almost three times that of controls. Furthermore, the lag time before the start of pHirecovery after the cells were maximally acidified fell from 93.5 ± 13.7 s in controls to 24.5 ± 2.1 s in K+-depleted rats. In all ICs tested, Na+- and K+-independent pHi recovery was abolished in the presence of bafilomycin (100 nM), an inhibitor of the H+-ATPase. Analysis of the cell-to-cell variability in the rate of pHi recovery reveals a change in the distribution of membrane-bound proton pumps in the IC population of cortical collecting duct from K+-depleted rats. Immunocytochemical analysis of collecting ducts from control and K+-depleted rats showed that K+-depletion increased the number of ICs with tight apical H+ATPase staining and decreased the number of cells with diffuse or basolateral H+-ATPase staining. Taken together, these data indicate that chronic K+ depletion induces a marked increase in plasma membrane H+ATPase activity in individual ICs.


2002 ◽  
Vol 282 (3) ◽  
pp. F541-F552 ◽  
Author(s):  
Bradley K. Yoder ◽  
Albert Tousson ◽  
Leigh Millican ◽  
John H. Wu ◽  
Charles E. Bugg ◽  
...  

Cilia are organelles that play diverse roles, from fluid movement to sensory reception. Polaris, a protein associated with cystic kidney disease in Tg737°rpkmice, functions in a ciliogenic pathway. Here, we explore the role of polaris in primary cilia on Madin-Darby canine kidney cells. The results indicate that polaris localization and solubility change dramatically during cilia formation. These changes correlate with the formation of basal bodies and large protein rafts at the apical surface of the epithelia. A cortical collecting duct cell line has been derived from mice with a mutation in the Tg737 gene. These cells do not develop normal cilia, which can be corrected by reexpression of the wild-type Tg737 gene. These data suggest that the primary cilia are important for normal renal function and/or development and that the ciliary defect may be a contributing factor to the cystic disease in Tg737°rpkmice. Further characterization of these cells will be important in elucidating the physiological role of renal cilia and in determining their relationship to cystic disease.


Sign in / Sign up

Export Citation Format

Share Document