Taurine ameliorates chronic streptozocin-induced diabetic nephropathy in rats

1995 ◽  
Vol 269 (3) ◽  
pp. F429-F438 ◽  
Author(s):  
H. Trachtman ◽  
S. Futterweit ◽  
J. Maesaka ◽  
C. Ma ◽  
E. Valderrama ◽  
...  

We examined the effect of two endogenous antioxidant agents, taurine and vitamin E, on renal function in experimental diabetes. Male Sprague-Dawley rats, rendered diabetic with streptozocin (STZ), were assigned to one of the following groups: 1) untreated; 2) insulin treatment with 6 U Ultralente insulin/day in two doses; 3) taurine supplementation by 1% taurine in drinking water; and 4) vitamin E supplementation at 100 IU vitamin E/kg chow. Animals were kept for 52 wk. The survival rate was similar (70-90%) in all groups except vitamin E-treated animals, of which 84% died by 6 mo. At 52 wk, glomerular filtration rate was elevated in untreated and taurine-treated STZ rats compared with normal or insulin-treated diabetic rats. Taurine supplementation reduced total proteinuria and albuminuria by nearly 50%. This treatment also prevented glomerular hypertrophy, preserved immunohistochemical staining for type IV collagen in glomeruli, and diminished glomerulosclerosis and tubulointerstitial fibrosis in diabetic animals. The changes in renal function and structure in taurine-treated diabetic rats were associated with normalization of renal cortical malondialdehyde content, lowering of serum free Fe2+ concentration, and decreased formation of the advanced glycooxidation products, pentosidine, and fluorescence in skin collagen. Administration of the vitamin E-enriched diet exacerbated the nephropathy in STZ-diabetic rats. In addition, vitamin E supplementation increased serum free Fe2+ concentration, enhanced renal lipid peroxidation, and accelerated the accumulation of advanced glycosylation end products (AGEs) in skin collagen. We conclude that administration of taurine, but not vitamin E, to rats with STZ-diabetes ameliorates diabetic nephropathy. The beneficial effect of taurine is related to reduced renal oxidant injury with decreased lipid peroxidation and less accumulation of AGEs within the kidney.

Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 890-898 ◽  
Author(s):  
Chen Jihua ◽  
Chen Cai ◽  
Bao Xubin ◽  
Yu Yue

AbstractObjectiveTo investigate the effects and mechanisms of dexmedetomidine (Dex) on model rats of diabetic nephropathy (DN).MethodsRats were divided into NC, model, Dex-L (1μg/ kg), Dex-M (5μg/kg) and Dex-H (10μg/kg) groups. Rats in all groups except in the NC group were injected with streptozotocin (STZ) combined with right nephrectomy. Rats in Dex (1, 5 and 10μg/kg) groups received gavage with Dex (1, 5 and 10μg/kg). After 4 weeks, rats were sacrificed and kidneys were collected. HE staining was performed for a renal injury. Masson staining was applied to detect the fibrotic accumulation in rat kidney. Radioimmunoassay was used to test the renal function. Immunohistochemical method was used to detect protein expressions of RhoA, p-MYPT and Nox4 in rat kidney.ResultsCompared with the NC group, the levels of urine microalbumin in protein, α1-MG and β2-MG, renal fibrotic accumulation, RhoA, p-MYPT, Nox4 and α-SMA in model group increased significantly (P<0.001, respectively). Compared with the model group, Dex low, medium and high groups improved the deposition of renal fiber in rats, inhibited the expression levels of microalbumin, α1-MG and β2-MG in urine and decreased expression of RhoA, p-MYPT, Nox4 and α-SMA proteins (P<0.05, P<0.01).ConclusionDex is possible to inhibit the expression of α-SMA and renal fibrous substance deposition in rat kidney via RhoA/ROCK/Nox4 signaling pathway, thereby reducing early kidney damage in model rats.


1996 ◽  
Vol 270 (2) ◽  
pp. G376-G384 ◽  
Author(s):  
S. Parkkila ◽  
O. Niemela ◽  
R. S. Britton ◽  
K. E. Brown ◽  
S. Yla-Herttuala ◽  
...  

Hepatic iron overload can cause lipid peroxidation with the formation of aldehydic products, hepatocellular injury, and fibrosis. Vitamin E (alpha-tocopherol) may prevent peroxidation-induced hepatic damage. We used confocal laser scanning microscopy, digital image analysis, and immunohistochemical methods to quantitate aldehyde-derived peroxidation products in the liver of rats with experimental iron overload with or without supplemental vitamin E. A strong autofluorescent reaction colocalizing with iron deposits was present in the livers of iron-loaded rats. Fluorescent granules were unevenly distributed in the cytosol of both hepatocytes and Kupffer cells in the periportal regions. Immunohistochemical studies revealed the presence of malon-dialdehyde adducts in the periportal regions of the ironloaded rats. Vitamin E supplementation markedly reduced the fluorescence intensity and the amount of aldehyde-derived peroxidation products and changed the distribution of stainable iron and iron-associated peroxidation products such that their levels were much decreased in Kupffer cells. These results indicate that aldehyde-derived covalent chemical addition products are formed in the liver in iron overload. Vitamin E supplementation markedly reduces the amount of these compounds and changes their cellular distribution. These findings should be implicated in the role of antioxidant therapy in conditions causing iron overload and lipid peroxidation.


Author(s):  
Alok Shiomurti Tripathi ◽  
Papiya Mitra Mazumder ◽  
Anil Vilasrao Chandewar

AbstractThe present study evaluates the possible mechanism of sildenafil citrate (SIL) for the attenuation of renal failure in diabetic nephropathic (DN) animals.Diabetic nephropathy was induced by a single dose of streptozotocin (STZ) (60 mg/kg, i.p.) and confirmed by assessing the blood and urine biochemical parameters on the 28th day of its induction. The selected DN animals were treated with glimepiride (0.5 mg/kg, p.o.) and SIL (2.5 mg/kg, p.o.) for a period of 6 weeks. Biochemical parameters in blood and urine were estimated after the 29th and 70th day of the protocol for the estimation of the effect of SIL.There were significant alterations in the blood and urine biochemical parameters in STZ-treated groups which confirmed DN. There was a significant decrease in the triglyceride level in the SIL-only-treated group on the 70th day of the protocol. The histopathology study also suggested that SIL treatment results in the improvement in the podocyte count in DN animals.The present study concludes that SIL improves the renal function by decreasing the triglyceride level and improving the podocyte count in DN animals.


Sign in / Sign up

Export Citation Format

Share Document