Feedback regulation of Na channels in rat CCT. IV. Mediation by activation of protein kinase C

1996 ◽  
Vol 270 (2) ◽  
pp. F371-F376 ◽  
Author(s):  
G. Frindt ◽  
L. G. Palmer ◽  
E. E. Windhager

The hypothesis that feedback inhibition of the apical Na+ channels in the cortical collecting tubule (CCT) is mediated by activation of a Ca(2+)-dependent protein kinase was tested using the patch-clamp technique. Na+ channel activity was monitored in cell-attached patches in principal cells of split-open rat tubules. Mean number of open channels (NPo) and single-channel current (i) were measured at 37 degrees C during continuous tubule superfusion. Phorbol 12-myristate 13-acetate (PMA; 50 nM), an activator of protein kinase C (PKC), decreased NPo to 33% of the control value. Staurosporine (200 nM), an inhibitor of PKC and of Ca(2+)-calmodulin kinase II, practically abolished the effect of PMA. Ouabain (1 mM), reduced NPo to 29% of control values and decreased i. Ouabain did not downregulate the channels in tubules exposed to staurosporine, although it still reduced i. Incubation of the tubules with 10 microM KN-62, a specific cell membrane-permeable inhibitor of Ca(2+)-calmodulin kinase II, did not interfere with the ouabain-dependent downregulation of the channels. The results support the view that the downregulation caused by ouabain involves the Ca(2+)-dependent phosphorylation of the channel itself or of proteins regulating the channel.

1989 ◽  
Vol 256 (6) ◽  
pp. F1094-F1103 ◽  
Author(s):  
B. N. Ling ◽  
D. C. Eaton

Na+ "self-inhibition" in tight epithelia describes the reduction in apical Na+ permeability observed with increasing luminal Na+ concentration. Patch clamp was used to examine regulation of self-inhibition at the level of single Na+ channels. After cell-attached patches (pipette solution, 129 mM NaCl) were obtained on amphibian distal nephron cells (A6), the 129 mM NaCl (high Na+) apical bath outside of the patch was replaced with 3 mM NaCl (low Na+). Within minutes there was an increase in open channel probability (Po) and the appearance of one to five "new" channels in patch membranes. A similar increase occurred when apical Na+ entry was blocked by luminal amiloride (10 microM). A23187 (1 microM), a calcium ionophore, added after low Na+ exchange, abolished the rise in channel activity. Increased Po and new channels, induced by either luminal Na+ or amiloride, were also reversed by either 4B-phorbol 12-myristate 13-acetate (PMA; 0.1 microM) or 1-oleyl-2-acetyl glycerol (OAG; 10 microM) over 15-30 min. 4 alpha-Phorbol (0.1 microM), an inactive phorbol, did not reduce channel activity. D-Sphingosine (100 microM), a protein kinase C (PKC) inhibitor, increased Po and new channels. Conclusions: 1) modulation of apical Na+ permeability by luminal Na+ does not require direct interaction of Na+ with the channel protein but, rather, appears to involve an intracellular regulatory pathway, 2) relieving self-inhibition alters both the number and kinetics of single Na+ channels, 3) the effect of low Na+ must be modulated via decreased apical Na+ entry and intracellular Na+, since amiloride yielded similar results, 4) changes in intracellular Na+ probably affect Na+ channel activity via cytosolic Ca2+, 5) the effects of decreasing luminal Na+ are reversed by PKC activators and mimicked by PKC inhibitors suggesting a possible role for PKC in Na+ self-inhibition.


1996 ◽  
Vol 108 (5) ◽  
pp. 375-379 ◽  
Author(s):  
Y Qu ◽  
J C Rogers ◽  
T N Tanada ◽  
W A Catterall ◽  
T Scheuer

Inactivation of both brain and cardiac Na+ channels is modulated by activation of protein kinase C (PKC) but in different ways. Previous experiments had shown that phosphorylation of serine 1506 in the highly conserved loop connecting homologous domains III and IV (LIII/IV) of the brain Na+ channel alpha subunit is necessary for all effects of PKC. Here we examine the importance of the analogous serine for the different modulation of the rH1 cardiac Na+ channel. Serine 1505 of rH1 was mutated to alanine to prevent its phosphorylation, and the resulting mutant channel was expressed in 1610 cells. Electrophysiological properties of these mutant channels were indistinguishable from those of wild-type (WT) rH1 channels. Activation of PKC with 1-oleoyl-2-acetyl-sn-glycerol (OAG) reduced WT Na+ current by 49.3 +/- 4.2% (P < 0.01) but S1505A mutant current was reduced by only 8.5 +/- 5.4% (P = 0.29) when the holding potential was -94 mV. PKC activation also caused a -17-mV shift in the voltage dependence of steady-state inactivation of the WT channel which was abolished in the mutant. Thus, phosphorylation of serine 1505 is required for both the negative shift in the inactivation curve and the reduction in Na+ current by PKC. Phosphorylation of S1505/1506 has common and divergent effects in brain and cardiac Na+ channels. In both brain and cardiac Na+ channels, phosphorylation of this site by PKC is required for reduction of peak Na+ current. However, phosphorylation of S1506 in brain Na+ channels slows and destabilizes inactivation of the open channel. Phosphorylation of S1505 in cardiac, but not S1506 in brain, Na+ channels causes a negative shift in the inactivation curve, indicating that it stabilizes inactivation from closed states. Since LIII/IV containing S1505/S1506 is completely conserved, interaction of the phosphorylated serine with other regions of the channel must differ in the two channel types.


1998 ◽  
Vol 88 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Henry U. Weight ◽  
Wai-Meng Kowk ◽  
Georg C. Rehmert ◽  
Zeljko J. Bosnjak

Background Alpha1-adrenergic receptor stimulation has been shown to inhibit cardiac Na+ current (INa). Furthermore, some form of synergistic interaction of alpha1-adrenergic effects on INa in combination with volatile anesthetics has been reported. In this study, the authors investigated the possible role of G proteins and protein kinase C in the effects of halothane and isoflurane in the absence and presence of alpha1-adrenergic stimulation on the cardiac INa. Methods The standard whole-cell configuration of the patch-clamp technique was used. INa was elicited by depolarizing test pulses from a holding potential of -80 mV in reduced Na+ solution (10 mM). The experiments were conducted on ventricular myocytes enzymatically isolated from adult guinea pig hearts. Results The inhibitory effect of halothane (1.2 mM) and isoflurane (1 mM) on peak INa was significantly diminished in the presence of guanosine 5'-O-[2-thiodiphosphate (GDPbetaS). In myocytes pretreated with pertussis toxin (PTX), the potency of halothane was significantly enhanced, but the isoflurane effect was unchanged. In the presence of the protein kinase C (PKC) inhibitor bisindolylmaleimide (BIS), the effect of halothane was unchanged. In contrast, the effect of isoflurane on INa in the presence of BIS was significantly enhanced. The positive interaction between methoxamine and halothane was evident in the presence of G protein and PKC inhibitors. In contrast, the effect of methoxamine with isoflurane was additive in the presence of GDPbetaS or BIS. Conclusions Different second messenger systems are involved in the regulation of cardiac Na+ current by volatile anesthetics. The effect of halothane involves a complex interaction with G proteins but is independent of regulation by PKC. In contrast, PKC is involved in the modulation of cardiac INa by isoflurane. In addition, non-PTX-sensitive G proteins may contribute to the effects of isoflurane. The positive interaction between methoxamine and anesthetics are independent of G proteins and PKC for halothane. In the case of isoflurane, the positive interaction with methoxamine is coupled to PTX-insensitive G proteins and PKC.


2002 ◽  
Vol 97 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Kazuhiro Fujimoto ◽  
Zeljko J. Bosnjak ◽  
Wai-Meng Kwok

Background Volatile anesthetics have cardioprotective effects that mimic ischemic preconditioning, including the involvement of adenosine triphosphate-sensitive potassium (K(ATP)) channels. However, evidence for a direct effect of volatile anesthetic on the K(ATP) channel is limited. In this study, the effects of isoflurane on the cardiac sarcolemmal K(ATP) channel were investigated. Methods Single ventricular myocytes were enzymatically isolated from guinea pig hearts. Whole cell and single-channel configurations, specifically the cell-attached and inside-out patch mode, of the patch clamp technique were used to monitor sarcolemmal K(ATP) channel current. Results In the cell-attached patch configuration, 2,4-dinitrophenol (150 microm) opened the sarcolemmal K(ATP) channel. Isoflurane (0.5 mm) further increased channel open probability and the number of active channels in the patch. In contrast, in the inside-out patch experiments, isoflurane had no significant effect on the K(ATP) channel activated by low ATP (0.2-0.5 mm). In addition, isoflurane had no effect on the K(ATP) channel when activated by adenosine diphosphate, adenosine + guanosine triphosphate, bimakalim, and 2,4-dinitrophenol under inside-out patch configurations. When K(ATP) current was monitored in the whole cell mode, isoflurane alone was unable to elicit channel opening. However, during sustained protein kinase C activation by 12,13-dibutyrate, isoflurane activated the K(ATP) current that was sensitive to glibenclamide. In contrast, isoflurane had no effect on the K(ATP) channel activated by 12,13-dibutyrate in a cell-free environment. Conclusions Isoflurane facilitated the opening of the sarcolemmal K(ATP) channel in the intact cell, but not in an excised, inside-out patch. The isoflurane effect was not due to a direct interaction with the K(ATP) channel protein, but required an intracellular component, likely including the translocation of specific protein kinase C isoforms. This suggests that the sarcolemmal K(ATP) channel may have a significant role in anesthetic-induced preconditioning.


2000 ◽  
Vol 275 (33) ◽  
pp. 25760-25765 ◽  
Author(s):  
James D. Stockand ◽  
Hui-Fang Bao ◽  
Julie Schenck ◽  
Bela Malik ◽  
Pam Middleton ◽  
...  

Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3661-3672 ◽  
Author(s):  
Andy K. Lee ◽  
Frederick W. Tse ◽  
Amy Tse

The hypothalamic hormone arginine vasopressin (AVP) potentiates the stimulatory action of CRH on ACTH secretion from pituitary corticotropes, but the underlying mechanism is elusive. Using the perforated patch-clamp technique to monitor membrane potentials in mouse corticotropes, we found that AVP triggered a transient hyperpolarization that was followed by a sustained depolarization. The hyperpolarization was caused by intracellular Ca2+ release that in turn activated the small conductance Ca2+-activated K+ (SK) channels. The depolarization was due to the suppression of background TWIK-related K+ (TREK)-1 channels. Direct activation of protein kinase C (PKC) reduced the TREK-1 current, whereas PKC inhibition attenuated the AVP-mediated reduction of the TREK-1 current, implicating the involvement of PKC. The addition of CRH (which stimulates the protein kinase A pathway) in the presence of AVP, or vice versa, resulted in further suppression of the TREK-1 current. In corticotropes with buffered cytosolic Ca2+ concentration ([Ca2+]i), AVP evoked a sustained depolarization, and the coapplication of AVP and CRH caused a larger depolarization than that evoked by AVP or CRH alone. In cells with minimal perturbation of [Ca2+]i and background TREK-1 channels, CRH evoked a sustained depolarization that was superimposed with action potentials, and the subsequent coapplication of AVP and CRH triggered a transient hyperpolarization that was followed by a larger depolarization. In summary, AVP and CRH have additive effects on the suppression of the TREK-1 current, resulting in a more robust depolarization in corticotropes. We suggest that this mechanism contributes to the potentiating action of AVP on CRH-evoked ACTH secretion.


1997 ◽  
Vol 73 ◽  
pp. 157
Author(s):  
Toshihiko Yanagita ◽  
Hideyuki Kobayashi ◽  
Keizou Masumoto ◽  
Ryuichi Yamamoto ◽  
Tomoaki Yuhi ◽  
...  

1996 ◽  
Vol 76 (4) ◽  
pp. 2455-2460 ◽  
Author(s):  
J. Nabekura ◽  
T. Omura ◽  
N. Horimoto ◽  
T. Ogawa ◽  
N. Akaike

1. The potentiation of glycine receptor-mediated taurine response (Itau) by alpha 1 adrenoceptor activation was investigated in neurons freshly dissociated from the rat substantia nigra (SN) using a nystatin perforated-patch recording. 2. Norepinephrine (NE) at a concentration of 10(-4) M in the presence of 10(-5) M yohimbine and 10(-5) M propranolol potentiated the peak amplitude of Itau (10(-3) M) at a holding potential of -40 mV under voltage clamp conditions. NE could be substituted by phenylephrine at this potentiation. 3. This potentiation of the taurine response persisted in the treatment with pertussis toxin (500 ng/ml) for 18 h. The intracellular application of GDP-beta S (100 microM) with a conventional whole cell patch recording mode abolished the effect of alpha 1 adrenoceptor activation on the Itau. 4. Staurosporine (10(-7) M) blocked the enhancement of Itau by 10(-4) M NE with 10(-5) M yohimbine and 10(-5) M propranolol. In additional phorbol-12-myristate 13-acetate (10(-5) M) potentiated Itau. 5. The intracellular application of 0.275 U/ml protein kinase C (PKC) with a conventional whole cell configuration gradually increased the peak amplitude of Itau. On the other hand, intracellular perfusion either without PKC or with PKC plus 4 microM PKC (19-36), a PKC inhibitor, did not potentiate Itau. 6. A single channel recording in a cell attached configuration revealed that NE (10(-4) M) with 10(-5) M yohimbine and 10(-5) M propranolol increased the total open time of the taurine-activated channel. This increase of the channel opening was antagonized by staurosporine (10(-7) M). 7. Neither tapsigargin (10(-6) M), LiCl (10(-4) M), trifluoperazine (10(-5) M) nor (S)-5-isoquinolinesulfonic acid, 4-[2-[(5-isoquinolinylsulfonyl) methylamino]-3-oxo-(4-phenyl-1-piperazinyl)-propyl]phenyl ester (10(-4) M) applied in the perfusate were found to affect the potentiation of Itau by alpha 1 adrenoceptor. The intracellular application of inositol triphosphates (10(-4) M) in a conventional whole cell recording also had no effect on Itau. 8. These findings thus indicate that alpha 1 adrenoceptor coupled with pertussis-insensitive G protein increases the intracellular PKC activity, thus leading to an increase in the channel opening activated by taurine and an enhancement of the peak amplitude of Itau in the SN neurons.


1998 ◽  
Vol 274 (5) ◽  
pp. L842-L853 ◽  
Author(s):  
Larissa A. Shimoda ◽  
J. T. Sylvester ◽  
James S. K. Sham

Although endothelin (ET)-1 is an important regulator of pulmonary vascular tone, little is known about the mechanisms by which ET-1 causes contraction in this tissue. Using the whole cell patch-clamp technique in rat intrapulmonary arterial smooth muscle cells, we found that ET-1 and the voltage-dependent K+(KV)-channel antagonist 4-aminopyridine, but not the Ca2+-activated K+-channel antagonist charybdotoxin (ChTX), caused membrane depolarization. In the presence of 100 nM ChTX, ET-1 (10−10to 10−7 M) caused a concentration-dependent inhibition of K+ current (56.2 ± 3.8% at 10−7 M) and increased the rate of current inactivation. These effects of ET-1 on K+ current were markedly reduced by inhibitors of protein kinase C (staurosporine and GF 109203X) and phospholipase C (U-73122) or under Ca2+-free conditions and were mimicked by activators of protein kinase C (phorbol 12-myristate 13-actetate and 1,2-dioctanoyl- sn-glycerol). These data suggest that ET-1 modulated pulmonary vascular reactivity by depolarizing pulmonary arterial smooth muscle, due in part to the inhibition of KV current that occurred via activation of the phospholipase C-protein kinase C signal transduction pathway.


Sign in / Sign up

Export Citation Format

Share Document