Expression of syntaxins in rat kidney

1997 ◽  
Vol 273 (5) ◽  
pp. F718-F730 ◽  
Author(s):  
Béatrice Mandon ◽  
Søren Nielsen ◽  
Bellamkonda K. Kishore ◽  
Mark A. Knepper

Previously, we demonstrated that a putative vesicle-targeting protein, syntaxin-4, is expressed in renal collecting duct principal cells and is localized to the apical plasma membrane, suggesting a role in targeting aquaporin-2-containing vesicles to the apical plasma membrane. To investigate whether other syntaxin isoforms are present in the renal collecting duct, we determined the intrarenal localization of syntaxin-2 and -3. Reverse transcription-polymerase chain reaction (RT-PCR) experiments using total RNA extracted from kidney and various organs revealed that both syntaxin-2 and -3 are expressed in kidney cortex and medulla. RT-PCR experiments using microdissected tubules and vascular structures from the kidney revealed that syntaxin-3 mRNA, but not syntaxin-2, is expressed in collecting duct cells. Syntaxin-3 mRNA was also relatively abundant in the thick ascending limb of Henle’s loop and in vasa recta. Syntaxin-2 mRNA was found chiefly in glomeruli. To investigate the localization of syntaxin-3 protein, a peptide-derived polyclonal antibody was raised in rabbits. In immunoblotting experiments, this antibody labeled a 37-kDa protein in inner medulla that was most abundant in plasma membrane-enriched subcellular fractions. Immunoperoxidase labeling of thin cryosections combined with immunogold electron microscopy showed that, in contrast to the labeling seen for syntaxin-4, syntaxin-3 labeling in medullary collecting duct was predominantly in the basolateral plasma membrane of intercalated cells. These results suggest the possibility that syntaxin-3 may be involved in selective targeting of acid-base transporters and/or in basolateral membrane remodeling in response to systemic acid-base perturbations.

2009 ◽  
Vol 297 (2) ◽  
pp. F292-F300 ◽  
Author(s):  
Abinash C. Mistry ◽  
Rickta Mallick ◽  
Janet D. Klein ◽  
Thomas Weimbs ◽  
Jeff M. Sands ◽  
...  

Proper targeting of the aquaporin-2 (AQP2) water channel to the collecting duct apical plasma membrane is critical for the urine concentrating mechanism and body water homeostasis. However, the trafficking mechanisms that recruit AQP2 to the plasma membrane are still unclear. Snapin is emerging as an important mediator in the initial interaction of trafficked proteins with target soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (t-SNARE) proteins, and this interaction is functionally important for AQP2 regulation. We show that in AQP2-Madin-Darby canine kidney cells subjected to adenoviral-mediated expression of both snapin and syntaxins, the association of AQP2 with both syntaxin-3 and syntaxin-4 is highly enhanced by the presence of snapin. In pull-down studies, snapin detected AQP2, syntaxin-3, syntaxin-4, and SNAP23 from the inner medullary collecting duct. AQP2 transport activity, as probed by AQP2's urea permeability, was greatly enhanced in oocytes that were coinjected with cRNAs of SNARE components (snapin+syntaxin-3+SNAP23) over those injected with AQP2 cRNA alone. It was not enhanced when syntaxin-3 was replaced by syntaxin-4 (snapin+syntaxin-4+SNAP23). On the other hand, the latter combination significantly enhanced the transport activity of the related AQP3 water channel while the presence of syntaxin-3 did not. This AQP-syntaxin interaction agrees with the polarity of these proteins' expression in the inner medullary collecting duct epithelium. Thus our findings suggest a selectivity of interactions between different aquaporin and syntaxin isoforms, and thus in the regulation of AQP2 and AQP3 activities in the plasma membrane. Snapin plays an important role as a linker between the water channel and the t-SNARE complex, leading to the fusion event, and the pairing with specific t-SNAREs is essential for the specificity of membrane recognition and fusion.


2000 ◽  
Vol 203 (1) ◽  
pp. 137-145 ◽  
Author(s):  
D. Brown ◽  
S. Breton

Many vertebrate transporting epithelia contain characteristic ‘mitochondria-rich’ cells that express high levels of a vacuolar proton-pumping ATPase (H(+)V-ATPase) on their plasma membrane and on intracellular vesicles. In the kidney cortex, A-cells and B-cells are involved in proton secretion and bicarbonate secretion, respectively, in the distal nephron and collecting duct. A-cells have an H(+)V-ATPase on their apical plasma membrane and on intracellular vesicles, whereas the cellular location of the H(+)V-ATPase can be apical, basolateral, bipolar or diffuse in B-cells. The rat epididymis and vas deferens also contain a distinct population of H(+)V-ATPase-rich epithelial cells. These cells are involved in generating a low luminal pH, which is involved in sperm maturation and in maintaining sperm in an immotile state during their passage through the epididymis and vas deferens. In both kidney and reproductive tract, H(+)V-ATPase-rich cells have a high rate of apical membrane recycling. H(+)V-ATPase molecules are transported between the cell surface and the cytoplasm in vesicles that have a well-defined ‘coat’ structure formed of the peripheral V(1) subunits of the H(+)V-ATPase. In addition, we propose that B-type intercalated cells have a transcytotic pathway that enables them to shuttle H(+)V-ATPase molecules from apical to basolateral plasma membrane domains. This hypothesis is supported by data showing that A-cells and B-cells have different intracellular trafficking pathways for LGP120, a lysosomal glycoprotein. LGP120 was found both on the basolateral plasma membrane and in lysosomes in B-cells, whereas no LGP120 was detectable in the plasma membrane of A-cells. We propose that the ‘polarity reversal’ of the H(+)V-ATPase in B-intercalated cells is mediated by a physiologically regulated transcytotic pathway that may be similar to that existing in some other cell types.


2007 ◽  
Vol 292 (1) ◽  
pp. F382-F394 ◽  
Author(s):  
Jakob Nielsen ◽  
Tae-Hwan Kwon ◽  
Jørgen Frøkiær ◽  
Mark A. Knepper ◽  
Søren Nielsen

Aldosterone induces redistribution of epithelial sodium channel (ENaC) to the apical plasma membrane from intracellular vesicles in renal connecting tubule (CNT) and cortical collecting duct (CCD). The role of the classical mineralocorticoid receptor (MR) in ENaC trafficking is still debated. We examined whether the MR antagonist spironolactone affects ENaC regulation in the kidney cortex of aldosterone-infused rats. Aldosterone infusion for 7 days resulted in a plasma aldosterone concentration in the high physiological range (3 to 4 nM). Aldosterone infusion decreased plasma K+ concentration compared with untreated control rats. Cotreatment with spironolactone completely blocked the aldosterone-induced decrease in plasma K+. Immunoblotting and immunohistochemistry showed increased protein abundance of Na-K-ATPase α1-subunit and NCC in the kidney cortex, in response to aldosterone infusion that was blocked by spironolactone. In contrast, aldosterone-induced redistribution of ENaC subunits from the cytoplasm to the apical plasma membrane domain in CNT and CCD was unaffected by spironolactone. Immunoblotting of αENaC showed increased protein abundance in aldosterone-infused rats that was not blocked by spironolactone treatment. To exclude possible glucocorticoid receptor (GR)-mediated effects of aldosterone, we treated aldosterone-infused rats with both spironolactone and the GR antagonist RU486. Combined MR and GR blockade prevented neither ENaC trafficking nor the upregulation of αENaC protein abundance in aldosterone-infused rats. We provide new evidence for ENaC trafficking occurring independent of MR and GR activation in aldosterone-infused rats.


2003 ◽  
Vol 284 (3) ◽  
pp. F584-F593 ◽  
Author(s):  
Sebastian Frische ◽  
Tae-Hwan Kwon ◽  
Jørgen Frøkiær ◽  
Kirsten M. Madsen ◽  
Søren Nielsen

The anion exchanger pendrin is present in the apical plasma membrane of type B and non-A-non-B intercalated cells of the cortical collecting duct (CCD) and connecting tubule and is involved in HCO[Formula: see text]secretion. In this study, we investigated whether the abundance and subcellular localization of pendrin are regulated in response to experimental metabolic acidosis and alkalosis with maintained water and sodium intake. NH4Cl loading (0.033 mmol NH4Cl/g body wt for 7 days) dramatically reduced pendrin abundance to 22 ± 4% of control values ( n = 6, P < 0.005). Immunoperoxidase labeling for pendrin showed reduced intensity in NH4Cl-loaded animals compared with control animals. Moreover, double-label laser confocal microscopy revealed a reduction in the fraction of cells in the CCD exhibiting pendrin labeling to 65% of the control value ( n = 6, P < 0.005). Conversely, NaHCO3 loading (0.033 mmol NaHCO3/g body wt for 7 days) induced a significant increase in pendrin expression to 153 ± 11% of control values ( n = 6, P < 0.01) with no change in the fraction of cells expressing pendrin. Immunoelectron microscopy revealed no major changes in the subcellular distribution, with abundant labeling in both the apical plasma membrane and the intracellular vesicles in all conditions. These results indicate that changes in pendrin protein expression play a key role in the well-established regulation of HCO[Formula: see text] secretion in the CCD in response to chronic changes in acid-base balance and suggest that regulation of pendrin expression may be clinically important in the correction of acid-base disturbances.


2001 ◽  
Vol 281 (3) ◽  
pp. F546-F556 ◽  
Author(s):  
Alok Shukla ◽  
Henrik Hager ◽  
Thomas Juhl Corydon ◽  
Andrew J. Bean ◽  
Ronald Dahl ◽  
...  

The vasopressin-induced trafficking of aquaporin-2 (AQP2) water channels in kidney collecting duct is likely mediated by vesicle-targeting proteins ( N-ethylmaleimide-sensitive factor attachment protein receptors). Hrs-2 is an ATPase believed to have a modulatory role in regulated exocytosis. To examine whether Hrs-2 is expressed in rat kidney, we carried out RT-PCR combined with DNA sequence analysis and Northern blotting using a digoxigenin-labeled Hrs-2 RNA probe. RT-PCR and Northern blotting revealed that Hrs-2 mRNA is localized in all zones of rat kidney. The presence of Hrs-2 protein in rat kidney was confirmed by immunoblotting, revealing a 115-kDa protein in kidney and brain membrane fractions corresponding to the expected molecular size of Hrs-2. Immunostaining and confocal laser scanning microscopy of LLC-PK1 cells (a porcine proximal tubule cell line) transfected with Hrs-2 DNA confirmed the specificity of the antibody and revealed that Hrs-2 is mainly localized in intracellular compartments, including cathepsin D-containing lysosomal/endosomal compartments. The cellular and subcellular localization of Hrs-2 in rat kidney was examined by immunocytochemistry and confocal laser scanning microscopy. Hrs-2 immunoreactivity was observed in collecting duct principal cells, and weaker labeling was detected in other nephron segments. The labeling was predominantly present in intracellular vesicles, but labeling was also observed in the apical plasma membrane domains of some cells. Colabeling with AQP2 revealed colocalization in vesicles and apical plasma membrane domains, suggesting a role for Hrs-2 in regulated AQP2 trafficking.


2009 ◽  
Vol 296 (3) ◽  
pp. F543-F555 ◽  
Author(s):  
Hye-Young Kim ◽  
Jill W. Verlander ◽  
Jesse M. Bishop ◽  
Brian D. Cain ◽  
Ki-Hwan Han ◽  
...  

Ammonia metabolism and transport are critical for acid-base homeostasis. The ammonia transporter family member Rh C glycoprotein (Rhcg) is expressed in distal renal tubular segments, and its expression is regulated in parallel with renal ammonia metabolism. However, there are inconsistencies in its reported subcellular distribution, with both apical and basolateral Rhcg reported in rat and human kidney and only apical expression in mouse kidney. Because the membrane location of Rhcg is critical for understanding its physiological role, we reassessed mouse Rhcg localization using refined immunolocalization methods. Two antibodies directed against different Rhcg-specific epitopes identified both apical and basolateral Rhcg immunolabel in mouse kidney. Immunogold electron microscopy both confirmed basolateral plasma membrane Rhcg expression and showed that apical immunolabel represented expression in both the apical plasma membrane and in subapical cytoplasmic vesicles. Immunoblots and Northern blots identified similar bands in Balb/c and C57BL/6 kidneys, suggesting basolateral Rhcg may result from alternative trafficking. Basolateral Rhcg intensity was strain dependent, with less basolateral Rhcg expression in the Balb/c mouse compared with the C57BL/6 mouse. In mice with collecting duct-specific Rhcg gene deletion, generated using Cre-loxP techniques, neither apical nor basolateral Rhcg immunolabel was identified in the collecting duct, confirming that basolateral Rhcg was the product of the same gene product as apical Rhcg. Although basolateral Rhcg expression differed between C57BL/6 and Balb/c mice, Rh B glycoprotein, which is exclusively basolateral, was expressed at similar levels in the two strains. We conclude that Rhcg is present in both the apical and basolateral plasma membrane in the mouse kidney, where it is likely to contribute to renal ammonia metabolism.


2001 ◽  
Vol 536 (3) ◽  
pp. 769-783 ◽  
Author(s):  
J. A. Sayer ◽  
G. S. Stewart ◽  
S. H. Boese ◽  
M. A. Gray ◽  
S. H. S. Pearce ◽  
...  

1998 ◽  
Vol 9 (6) ◽  
pp. 1437-1448 ◽  
Author(s):  
Thierry Galli ◽  
Ahmed Zahraoui ◽  
Vadakkanchery V. Vaidyanathan ◽  
Graça Raposo ◽  
Jian Min Tian ◽  
...  

The importance of soluble N-ethyl maleimide (NEM)-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs) in synaptic vesicle exocytosis is well established because it has been demonstrated that clostridial neurotoxins (NTs) proteolyze the vesicle SNAREs (v-SNAREs) vesicle-associated membrane protein (VAMP)/brevins and their partners, the target SNAREs (t-SNAREs) syntaxin 1 and SNAP25. Yet, several exocytotic events, including apical exocytosis in epithelial cells, are insensitive to numerous clostridial NTs, suggesting the presence of SNARE-independent mechanisms of exocytosis. In this study we found that syntaxin 3, SNAP23, and a newly identified VAMP/brevin, tetanus neurotoxin (TeNT)-insensitive VAMP (TI-VAMP), are insensitive to clostridial NTs. In epithelial cells, TI-VAMP–containing vesicles were concentrated in the apical domain, and the protein was detected at the apical plasma membrane by immunogold labeling on ultrathin cryosections. Syntaxin 3 and SNAP23 were codistributed at the apical plasma membrane where they formed NEM-dependent SNARE complexes with TI-VAMP and cellubrevin. We suggest that TI-VAMP, SNAP23, and syntaxin 3 can participate in exocytotic processes at the apical plasma membrane of epithelial cells and, more generally, domain-specific exocytosis in clostridial NT-resistant pathways.


Sign in / Sign up

Export Citation Format

Share Document